
A New Class of Vulnerabilities in SMI Handlers

Advanced Threat Research (www.intelsecurity.com/atr)

Oleksandr Bazhaniuk, Yuriy Bulygin, Andrew Furtak, Mikhail Gorobets, John
Loucaides, Alexander Matrosov, Mickey Shkatov

CanSecWest 2015 Vancouver, Canada

http://www.intelsecurity.com/atr
https://cansecwest.com/index.html

Agenda

• Background on SMM and SMI handlers

• Known SMM vulnerabilities

• New SMI handler vulnerabilities

• Demo

• Similar Issues & Mitigations

Background on SMM and SMI Handlers

System Management Mode (SMM)

System Management Interrupt (SMI)

 CPU (OS) state is saved in SMRAM upon entry to SMM and restored upon exit from SMM

 SMI handlers are invoked by CPU upon System Management Interrupt (SMI) from chipset or

other logical CPUs and execute in System Management Mode (SMM) of x86 CPU

 SMI handlers return to the OS using RSM instruction

SMRAM is a range of DRAM reserved by BIOS SMI handlers

 Protected from software and device acces

System Management Interrupt (SMI) Handlers

SMRR_PHYSBASE

SMRAM

0x00000000

0xFFFFFFFF

SMI handlers

SMM state

save area

SMBASE + 8000h

SMBASE

SMBASE + FFFFh

SMRAM

System Management Interrupt (SMI) Handlers

SMM handler execution environment:

• At entry, CS = SMBASE (0x30000 at reset), EIP=0x8000

• Addressable physical space from 0 to 0xFFFFFFFFh (4G)

• No paging

• All hardware interrupts are disabled

SMM Core

dispatcher
SMI

SMST

CPU
info

Memory
info

I/O

info

SMM

Driver
SMM

Driver

SMM

Driver

SMM

callback
SMM

callback

SMM

callback
...

RSM

SMM code flow

Trigger ‘SW’ SMI via APMC I/O Port

_swsmi PROC

 ..

 ; setting up GPR (arguments) to SMI handler call

 ; AX gets overwritten by _smi_code_data (which is passed in RCX)

 ; DX gets overwritten by the value of APMC port (= 0x00B2)

 mov rax, rdx ; rax_value

 mov ax, cx ; smi_code_data

 mov rdx, r10 ; rdx_value

 mov dx, 0B2h ; APMC SMI control port 0xB2

 mov rbx, r8 ; rbx_value

 mov rcx, r9 ; rcx_value

 mov rsi, r11 ; rsi_value

 mov rdi, r12 ; rdi_value

 ; write smi_code_data value to SW SMI control/data ports (0xB2/0xB3)

 out dx, ax

 ..

 ret

_swsmi ENDP

Trigger ‘SW’ SMI using CHIPSEC

From command line:

chipsec_util.py smi smic smid [RAX RBX RCX RDX RSI RDI]

From any module in CHIPSEC:

self.intr = chipsec.hal.Interrupts(self.cs)

self.intr.send_SW_SMI(smic,smid,rax,rbx,rcx,rdx,rsi,rdi)

Known SMI Vulnerabilities

Known Vulnerabilities Related to SMM

• Issue

• When D_LCK is not set by BIOS, SMM space decode can be
changed to open access to CSEG when CPU is not in SMM:
Using CPU SMM to Circumvent OS Security Functions

• Also Using SMM For Other Purposes

• Mitigation

• D_LCK bit locks down Compatible SMM space (a.k.a. CSEG)
configuration (SMRAMC)

• SMRAMC[D_OPEN]=0 forces access to legacy SMM space
decode to system bus rather than to DRAM where SMI
handlers are when CPU is not in System Management Mode
(SMM)

• Check
•chipsec_main –-module common.smm

Unlocked Compatible/Legacy SMRAM

http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf
http://phrack.org/issues/65/7.html

Known Vulnerabilities Related to SMM

• Issue

• CPU executes from cache if memory type is cacheable

• Ring0 exploit can make SMRAM cacheable (variable MTRR)

• Ring0 exploit can then populate cache-lines at SMBASE with SMI
exploit code (ex. modify SMBASE) and trigger SMI

• CPU upon entering SMM will execute SMI exploit from cache

• Attacking SMM Memory via Intel Cache Poisoning

• Getting Into the SMRAM: SMM Reloaded

• Mitigation

• CPU System Management Range Registers (SMRR) forcing UC
and blocking access to SMRAM when CPU is not in SMM

• Check

•chipsec_main –-module common.smrr

SMRAM “Cache Poisoning” Attacks

http://www.invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://cansecwest.com/csw09/csw09-duflot.pdf

Legacy SMI Handlers Calling Out of SMRAM

• OS level exploit stores payload in F-segment below 1MB
(0xF8070 Physical Address)

• Exploit has to also reprogram PAM for F-segment

• Then triggers “SW SMI” via APMC port (I/O 0xB2)

• SMI handler does CALL 0F000:08070 in SMM

• BIOS SMM Privilege Escalation Vulnerabilities (14 issues in
just one SMI Handler)

• System Management Mode Design and Security Issues

Branch Outside of SMRAM

http://www.securityfocus.com/archive/1/505590
http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf

Legacy SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB

Legacy SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB

Code fetch

in SMM

Legacy SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB

0xF8070: payload
0F000:08070 =

0xF8070 PA

Code fetch

in SMM

Function Pointers Outside of SMRAM (DXE SMI)

Phys Memory

SMRAM

mov ACPINV+x, %rax

call *0x18(%rax)

ACPI NV Area

payload

1. Read function

pointer from ACPI NVS

memory (outside

SMRAM)

Pointer to payload 2. Call function

pointer (payload

outside SMRAM)

Attacking Intel BIOS

https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf

Mitigating SMM “Call-Outs”

These issues are specific to particular SMI Handler implementation…

 static analysis of binary?

 run-time debugging?

CPU Hardware Support (starting in Haswell)

 SMM Code Access Check
– SMM_Code_Chk_En (SMM-RW)

» This control bit is available onlyif MSR_SMM_MCA_CAP[58] == 1.

» When set to ‘0’ (default) none of the logical processors are prevented from executing SMM
code outside the ranges defined by the SMRR.

» When set to ‘1’ any logical processor in the package that attempts to execute SMM code not
within the ranges defined by the SMRR will assert an unrecoverable MCE.

 Attempts to execute code outside SMRAM while inside SMM result in a Machine
Check Exception!

Legacy SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB

0xF8070: payload
0F000:08070 =

0xF8070 PA

Code fetch
in SMM – causes

Machine Check

Exception

Function Pointers Outside of SMRAM (DXE SMI)

Phys Memory

SMRAM

mov ACPINV+x, %rax

call *0x18(%rax)

ACPI NV Area

payload

1. Read function

pointer from ACPI

NVS memory
(outside SMRAM)

Pointer to payload 2. Call function

pointer (payload
outside SMRAM)

 -- causes MCE!

A new class of vulnerabilities in SMI

handlers

Pointer Arguments to SMI Handlers

Phys Memory

SMI Handlers in
SMRAM

OS Memory

SMI Handler writes result to a buffer at address passed in RBX…

RAX (code)

RBX (pointer)

RCX (function)

RDX

RSI

RDI

SMI handler specific structure

SMI

Pointer Vulnerabilities

Phys Memory

SMI Handlers in
SMRAM

OS Memory

Exploit tricks SMI handler to write to an address inside SMRAM

RAX (code)

RBX (pointer)

RCX (function)

RDX

RSI

RDI

Fake structure inside SMRAM

SMI

What to overwrite inside SMRAM?

• Depending on the vulnerability, caller may control address to write,

the value written, or both.

• Often the caller controls the address but doesn’t have control over

the values written to the address by the SMI handler

• In our example the attacker controls the address and does not

control the value:

 The SMI handler writes 0 value to the specified address

What to overwrite inside SMRAM?

 What can an exploit overwrite in SMRAM without crashing?

 SMI Handler code starting at SMBASE + 8000h

 Internal SMI handler’s state/flags inside SMRAM

 Contents of SMM state save area at SMBASE + FC00h, where the CPU state

is stored on SMM entry

What to overwrite inside SMRAM?

• Current value of SMBASE MSR is also saved in SMM state save area

by CPU at offset SMBASE + FEF8h upon SMI

• Stored value of SMBASE is restored upon executing RSM

• SMBASE relocation: SMI handler may change the saved value of

SMBASE in order to change the location of SMRAM upon next SMI

• The idea:

 Move SMBASE to a new, unprotected location by changing the

SMBASE value stored in the SMM state save area.

How do we know where to write?

SMM state save is at SMBASE + FC00h

 But SMBASE is not known

• SMBASE MSR can be read only in SMM

• SMBASE is different per CPU thread

• SMBASE is different per BIOS implementation

SMBASE should be programmed at some offset from

TSEG/SMRR_PHYSBASE

How do we know where to write?

1. Dump contents of SMRAM
 Use hardware debugger

 Use similar “pointer read” vulnerability

 Use another vulnerability (e.g. S3 boot script) to disable SMRAM DMA protection

and use DMA via graphics aperture to read SMRAM

 And in the dump look for

 SMI handler entry point code

 Known values in GP registers (invoke SMI with these values before dump)

2. Read SPI flash memory & RE initialization code to find SMBASE there.

3. Guess location of SMBASE:
 SMBASE = SMRR_PHYSBASE

 SMBASE = SMRR_PHYSBASE - 8000h (SMRR_PHYSBASE at SMI handler location)

 Blind iteration through all offsets within SMRAM as potential saved SMBASE value

How does the attack work?

Phys Memory

SMI Handler

OS Memory

• CPU stores current value of SMBASE in SMM save state area on SMI and

restores it on RSM

RAX (code)

RBX (pointer)

RCX (function)

SMI handler specific structure

SMI

SMBASE

SMM State Save Area Saved SMBASE value

SMI Entry Point

(SMBASE + 8000h)

How does the attack work?

Phys Memory

SMI Handler

OS Memory

• Attacker prepares fake SMRAM with new SMI handler outside of SMRAM at
some address (PA 0) that will be a new SMBASE

Fake SMI handler

SMBASE

Saved SMBASE value SMM State Save Area

SMI Entry Point

(SMBASE + 8000h)

How does the attack work?

Phys Memory

SMI Handler

OS Memory

• Attacker triggers SMI w/ RBX pointing to saved SMBASE address in SMRAM

• SMI handler overwrites saved SMBASE on exploit’s behalf with address of fake
SMBASE (e.g. 0 PA)

RAX (code)

RBX (pointer)

RCX (function)

SMI

SMBASE

Fake SMI handler

Saved SMBASE value SMM State Save Area

SMI Entry Point

(SMBASE + 8000h)

How does the attack work?

Phys Memory

SMI Handler

OS Memory

• Attacker triggers another SMI

• CPU executes fake SMI handler at new entry point outside of original

protected SMRAM because SMBASE location changed

SMI

SMBASE

Fake SMI handler

Saved SMBASE value SMM State Save Area

New SMI Entry Point

How does the attack work?

• Fake SMI handler disables original SMRAM protection (disables SMRR)

• Then restores original SMBASE value to switch back to original SMRAM

Phys Memory

SMI Handler

(SMRAM is not protected)

OS Memory

SMBASE

Fake SMI handler

SMM State Save Area

New SMI Entry Point

SMI Handler

(SMRAM is not protected)

Original saved SMBASE

value

How does the attack work?

Phys Memory

SMI Handler

(SMRAM is not protected)

OS Memory

• The SMRAM is restored but not protected by HW anymore

• The SMI handler may be modified by attacker as well as other SMRAM data

SMBASE

SMI Entry Point

(SMBASE + 8000h)

Demo

Similar Vulnerabilities & Mitigations

EDKII “CommBuffer” Pointer
 CommBuffer is a memory buffer

 Facilitates communication between OS runtime and SMI handlers

 Pointer to CommBuffer is stored in “UEFI” ACPI table in ACPI NVS memory accessible
to OS kernel code

 Contents of CommBuffer are specific to SMI handler.

 For example, when calling the variable SMI handler, CommBuffer contains
– UEFI variable Name, GUID, and Data

 Example SecurityPkg/VariableAuthenticated/RuntimeDxe:

SmmVariableHandler (
...
 SmmVariableFunctionHeader = (SMM_VARIABLE_COMMUNICATE_HEADER *)CommBuffer;
 switch (SmmVariableFunctionHeader->Function) {
 case SMM_VARIABLE_FUNCTION_GET_VARIABLE:
 SmmVariableHeader = (SMM_VARIABLE_COMMUNICATE_ACCESS_VARIABLE *)
 SmmVariableFunctionHeader->Data;
 Status = VariableServiceGetVariable (
 ...
 (UINT8 *)SmmVariableHeader->Name + SmmVariableHeader->NameSize
);

VariableServiceGetVariable (
 ...
 OUT VOID *Data
)
...
 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);

Mitigating Issues in “CommBuffer”

 Addressed via Tianocore Advisory Logs

 Note the calls to SmmIsBufferOutsideSmmValid. This checks for addresses to overlap
with SMRAM range

SmiHandler() {

 // check CommBuffer is outside SMRAM

 if (!SmmIsBufferOutsideSmmValid(CommBuffer, Size)) {

 return EFI_SUCCESS;

 }

 switch(command)

 case 1: do_command1(CommBuffer);

 case 2: do_command2(CommBuffer);

SMRAM CommBuffer

SMRAM CommBuffer

http://www.tianocore.org/security/
http://www.tianocore.org/security/
http://www.tianocore.org/security/

“CommBuffer” TOCTOU Issues

• SMI handler checks that it won’t access outside of CommBuffer

• What if SMI handler reads CommBuffer memory again after the check?

• DMA engine (for example GFx) can modify contents of CommBuffer

InfoSize = .. + SmmVariableHeader->DataSize + SmmVariableHeader->NameSize;

if (InfoSize > *CommBufferSize - SMM_VARIABLE_COMMUNICATE_HEADER_SIZE) {

 Status = VariableServiceGetVariable (

 ...

 (UINT8 *)SmmVariableHeader->Name + SmmVariableHeader->NameSize

);

VariableServiceGetVariable (

 ...

 OUT VOID *Data

)

...

 if (*DataSize >= VarDataSize) {

 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);

Time of Check

Time of Use

Validating Input Pointers

 Read pointer issues are also exploitable to expose the contents of

SMRAM

 SMI handlers have to validate each address/pointer (+ offsets) they
receive from OS prior to reading from or writing to it including returning

status/error codes

 For instance, use/implement a function which validates address + size for
overlap with SMRAM similar to SmmIsBufferOutsideSmmValid in EDKII

So, how do you find issues like that?

1. Allocate memory and fill with pattern

2. Set registers to address of allocated memory

3. Invoke SW SMI

4. Check fill pattern

[x][===

[x][Module: A tool to test SMI handlers for pointer validation vulnerabilies

[x][===

Usage: chipsec_main -m tools.smm.smm_ptr [-a <fill_byte>,<size>,<config_file>,<address>]

CHIPSEC Output
[*] Configuration:

 Byte to fill with : 0x11

 No of bytes to fill : 0x500

 SMI config file : chipsec/modules/tools/smm/smm_config.ini

 Default value of GP registers : 0x5A5A5A5A5A5A5A5A

 Allocated physmem buffer : 0x0000000071A20800 (passed in GP reg to SMI)

 Second order buffer mode : OFF

[*] Fuzzing SMI handlers defined in 'chipsec/modules/tools/smm/smm_config.ini'..

[*] Filling in 1280 bytes at PA 0x0000000071A20800 with ''..

[*] Sending SMI# 0x5A (data = 0x5A) SW_SMI_Name (swsmi_desc)..

 RAX: 0x0000000071A20800 (AX will be overwritten with values of SW SMI ports B2/B3)

 RBX: 0x0000000071A20800

 RCX: 0x0000000071A20800

 RDX: 0x0000000071A20800 (DX will be overwritten with 0x00B2)

 RSI: 0x0000000071A20800

 RDI: 0x0000000071A20800

Checking contents at PA 0x0000000071A20800..

[+] Contents at PA 0x0000000071A20800 have not changed

References

1. CHIPSEC: https://github.com/chipsec/chipsec

2. Trianocore security advisories

3. UEFI Forum USRT (security@uefi.org , PGP key)

4. Intel PSIRT (secure@intel.com, PGP key)

https://github.com/chipsec/chipsec
https://github.com/chipsec/chipsec
https://github.com/chipsec/chipsec
http://www.tianocore.org/security/
http://www.tianocore.org/security/
http://www.tianocore.org/security/
http://uefi.org/security
mailto:security@uefi.org
http://www.uefi.org/sites/default/files/resources/UEFI Security Admin.txt
https://security-center.intel.com/
mailto:secure@intel.com
https://security-center.intel.com/PGPPublicKey.aspx

Thank You!

