
BIOS and Secure Boot Attacks Uncovered

Andrew Furtak, Yuriy Bulygin, Oleksandr Bazhaniuk, John Loucaides,
Alexander Matrosov, Mikhail Gorobets

ekoparty 10

In The Beginning

Was The Legacy BIOS..

Legacy BIOS Update and Secure Boot

• Mebromi malware includes BIOS infector & MBR bootkit
components

• Patches BIOS ROM binary injecting malicious ISA Option
ROM with legitimate BIOS image mod utility

• Triggers SW SMI 0x29/0x2F to erase SPI flash then write
patched BIOS binary

Signed BIOS Updates Are Rare

• No concept of Secure or Verified Boot

• Wonder why TDL4 and likes flourished?

No Signature Checks of OS boot loaders (MBR)

http://contagiodump.blogspot.com/2011/09/mebromi-bios-rootkit-affecting-award.html

Then World Moved to UEFI..

UEFI [Compliant] Firmware

SEC

Pre-EFI

Init (PEI)

Driver

Exec Env

(DXE)

Boot Dev
Select (BDS)

Runtime / OS

S-CRTM; Init caches/MTRRs; Cache-as-RAM (NEM); Recovery; TPM Init

S-CRTM: Measure DXE/BDS

Early CPU/PCH Init

Memory (DIMMs, DRAM) Init, SMM Init

Continue initialization of platform & devices

Enum FV, dispatch drivers (network, I/O, service..)

Produce Boot and Runtime Services

Boot Manager (Select Boot Device)

EFI Shell/Apps; OS Boot Loader(s)

ExitBootServices. Minimal UEFI services (Variable)

ACPI, UEFI SystemTable, SMBIOS table

CPU Reset

Windows 8 Secure Boot

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders (winload.efi, winresume.efi)

System Firmware (SEC/PEI)

UEFI

OROM

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed

BIOS

Update

UEFI

OROM

UEFI

App

UEFI

App

DXE

Driver

DXE

Driver

OS Kernel / Early Launch Anti-Malware (ELAM)

UEFI

Secure

Boot

OS Driver OS Driver

Windows 8

Secure

Boot

Attacks Against Platform Firmware

BIOS Attack Surface: Secure Boot

System
FW/BIOS

SPI Flash
Protection

BIOS
Update

SMRAM
Protection

Hardware

Config.

SMI
Handlers

Secure
Boot

BIOS
Settings
(NVRAM,
Variables)

…

Attack 1: Via Platform Key in SPI NVRAM

Secure Boot Key Hierarchy

Platform Key (PK)

 Verifies KEKs

 Platform Vendor’s Cert

Key Exchange Keys (KEKs)

 Verify db and dbx

 Earlier rev’s: verifies image signatures

Authorized Database (db)

Forbidden Database (dbx)

 X509 certificates, SHA1/SHA256 hashes of allowed & revoked images

 Earlier revisions: RSA-2048 public keys, PKCS#7 signatures

Platform Key (Root Key) has to be Valid

PK variable exists in NVRAM?

Yes. Set SetupMode variable to USER_MODE

No. Set SetupMode variable to SETUP_MODE

SecureBootEnable variable exists in NVRAM?

Yes

 SecureBootEnable variable is SECURE_BOOT_ENABLE and
SetupMode variable is USER_MODE? Set SecureBoot variable to
ENABLE

 Else? Set SecureBoot variable to DISABLE

No

 SetupMode is USER_MODE? Set SecureBoot variable to ENABLE

 SetupMode is SETUP_MODE? Set SecureBoot variable to DISABLE

First Public Windows 8 Secure Boot Bypass

A Tale Of One Software Bypass Of Windows 8 Secure Boot

https://media.blackhat.com/us-13/us-13-Bulygin-A-Tale-of-One-Software-Bypass-of-Windows-8-Secure-Boot-Slides.pdf

Modifying Platform Key in NVRAM

Corrupt Platform Key EFI variable in NVRAM

 Name (“PK”) or Vendor GUID {8BE4DF61-93CA-11D2-
AA0D-00E098032B8C}

 AuthenticatedVariableService DXE driver enters

Secure Boot SETUP_MODE when correct “PK” EFI variable

cannot be located in EFI NVRAM

 Main volatile SecureBoot variable is then set to DISABLE

 DXE ImageVerificationLib then assumes Secure Boot is

off and skips Secure Boot checks

 Generic exploit, independent of the platform/vendor

 1 bit modification!

Exploit Programs SPI Cntlr & Modifies BIOS

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

DXE

Driver

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed BIOS

Update

DXE

Driver

OS Kernel

OS Driver OS Exploit

Modify UEFI BIOS

Firmware in ROM

Exploit Programs SPI Cntlr & Modifies BIOS

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

DXE

Driver

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed BIOS

Update

DXE

Driver

OS Kernel

OS Driver OS Exploit

Attack 2: Via Secure Boot On/Off Switch

Disabling Secure Boot?

SecureBootEnable UEFI Variable

 When turning ON/OFF Secure Boot, it should change

Hmm.. but there is no SecureBootEnable variable

 Where do BIOSes store Secure Boot Enable flag?

Should be NV  somewhere in SPI Flash..

 Just dump SPI flash with Secure Boot ON and OFF

 Then compare two SPI flash images

Yeah.. Good Luck With That

There’s A Better Way..

Secure Boot On Secure Boot Off

Secure Boot On Secure Boot Off

Secure Boot Disable is Really in Setup!

chipsec_util.py spi dump spi.bin

chipsec_util.py uefi nvram spi.bin

chipsec_util.py decode spi.bin

Attack 3: Via Image Verification Policies

UEFI firmware has secure boot policies defining what it should do
DENY, ALLOW, DEFER, QUERY_USER

with images depending on where they are loaded from

FV, FIXED_MEDIA, REMOVABLE_MEDIA, OPTION_ROM

and if they fail signature checks

Storing Image Verification Policies in Setup

• Read ‘Setup’ UEFI variable and look for sequences
• 04 04 04, 00 04 04, 05 05 05, 00 05 05

• We looked near Secure Boot On/Off Byte!
• Modify bytes corresponding to policies to 00 (ALWAYS_EXECUTE)

then write modified ‘Setup’ variable

Modifying Image Verification Policies

[CHIPSEC] Reading EFI variable Name='Setup' GUID={EC87D643-EBA4-4BB5-A1E5-

3F3E36B20DA9} from 'Setup_orig.bin' via Variable API..

EFI variable:

Name : Setup

GUID : EC87D643-EBA4-4BB5-A1E5-3F3E36B20DA9

Data :

..

01 01 01 00 00 00 00 01 01 01 00 00 00 00 00 00 |

00 00 00 00 00 00 01 01 00 00 00 04 04 |

[CHIPSEC] (uefi) time elapsed 0.000

[CHIPSEC] Writing EFI variable Name='Setup' GUID={EC87D643-EBA4-4BB5-A1E5-

3F3E36B20DA9} from 'Setup_policy_exploit.bin' via Variable API..

Writing EFI variable:

Name : Setup

GUID : EC87D643-EBA4-4BB5-A1E5-3F3E36B20DA9

Data :

..

01 01 01 00 00 00 00 01 01 01 00 00 00 00 00 00 |

00 00 00 00 00 00 01 01 00 00 04 00 00 |

[CHIPSEC] (uefi) time elapsed 0.203

OptionRomPolicy

FixedMediaPolicy

RemovableMediaPolicy

Allows Bypassing Secure Boot

Issue was co-discovered with Corey Kallenberg, Xeno Kovah, John Butterworth and Sam Cornwell from MITRE
All Your Boot Are Belong To Us, Setup for Failure: Defeating SecureBoot

https://cansecwest.com/slides/2014/AllYourBoot_csw14-mitre-final.pdf
http://syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip

How To Avoid These?

1. Do not store critical Secure Boot configuration in UEFI variables

accessible to potentially compromised OS kernel or boot loader

 Remove RUNTIME_ACCESS attribute (reduce access permissions)

 Use authenticated variable where required by UEFI Spec

 Disabling Secure Boot requires physically present user

2. Set Image Verification Policies to secure values

 Use Platform Configuration Database (PCD) for the policies

 Using ALWAYS_EXECUTE,ALLOW_EXECUTE_* is a bad idea

 Especially check PcdOptionRomImageVerificationPolicy

 Default should be NEVER_EXECUTE or DENY_EXECUTE

Attack 4: Via TE Executables

SecureBoot EFI variable doesn’t exist or equals to

SECURE_BOOT_MODE_DISABLE? EFI_SUCCESS

File is not valid PE/COFF image? EFI_ACCESS_DENIED

SecureBootEnable NV EFI variable doesn’t exist or equals to

SECURE_BOOT_DISABLE? EFI_SUCCESS

SetupMode NV EFI variable doesn’t exist or equals to SETUP_MODE?

EFI_SUCCESS

Terse Executable EFI Images

 UEFI BIOS also support Terse Executable images to save flash space

 TE header includes a smaller subset of fields from PE/COFF header

PE/TE Header Handling by the BIOS

 Decoded UEFI BIOS image from SPI Flash

PE/TE Header Handling by the BIOS

CORE_DXE.efi:

PE/TE Header Confusion Issue

 TE format doesn’t support signatures so BIOS has to deny

loading such image

 In practice, BIOS implementations may differ…

 ExecuteSecurityHandler calls GetFileBuffer to

read an executable image

 Which reads the image, checks if it has a valid PE/COFF header
and returns EFI_LOAD_ERROR if not

 In case of an image load error, ExecuteSecurityHandler

returns EFI_SUCCESS (0)

 Signature Checks are Skipped!

PE/TE Header Confusion Attack

 Convert malicious PE/COFF EFI executable (bootkit.efi) to

TE by replacing the image header

 Replace OS boot loaders with resulting TE EFI executable

 Vulnerable BIOS skips signature check for this executable

 Malicious bootkit.efi loads & patches original OS boot loader

Attack 5: Via Compatibility Support Module

• CSM allows legacy boot on top of UEFI firmware

• Legacy boot: [Unsigned] MBR, Option ROMs, etc.

• We found that some systems have CSM enabled by
default with Secure Boot and fallback to boot from
MBR when UEFI signature check fails

• Other systems don’t allow CSM=ON in BIOS Setup opts

• While storing CSM Enable policy in Setup UEFI variable

CSM and Secure Boot

Attack 6: Via Clearing Secure Boot Config

“Clear Secure Boot keys” takes effect after reboot

 The switch that triggers clearing of Secure Boot keys is in UEFI

Variable (happens to be in ‘Setup’ variable)

But recall that Secure Boot is OFF without Platform Key

PK is cleared  Secure Boot is Disabled

Attack 7: Via Restoring Default Config

Default Secure Boot keys can be restored [When there’s no PK]

Switch that triggers restore of Secure Boot keys to their default

values is in UEFI Variable (happens to be in ‘Setup’)

Nah.. Default keys are protected. They are in FV

But we just added 9 hashes to the DBX blacklist 

http://technet.microsoft.com/en-us/security/advisory/2871690

Attack 8: Via.. Reboot

The system protects Secure Boot configuration from modification but has

an implementation bug

Firmware stores integrity of Secure Boot settings & checks on reboot

Upon integrity mismatch, beeps 3 times, waits timeout then…

Keeps booting with modified Secure Boot settings

BIOS Attack Surface: BIOS Settings

System
FW/BIOS

SPI Flash
Protection

BIOS
Update

SMRAM
Protection

Hardware

Config.

SMI
Handlers

Secure
Boot

BIOS
Settings
(NVRAM,
Variables)

…

Bricking System Through Corrupting “Setup”

1. You’ve already seen that storing

Secure Boot settings in Setup is bad

2. Now user-mode malware can

clobber contents of “Setup” UEFI

variable with garbage or delete it

3. Malware may also clobber/delete

default configuration

4. The system may never boot again

The attack has been co-discovered with researchers from

MITRE Corporation (Corey Kallenberg, Sam Cornwell, Xeno
Kovah, John Butterworth).

Source: Setup For Failure

http://haxpo.nl/wp-content/uploads/2014/01/D1T2-More-Ways-to-Defeat-Secure-Boot.pdf

Handling Sensitive Data

• BIOS and Pre-OS applications store keystrokes in legacy
BIOS keyboard buffer in BIOS data area (at PA = 0x41E)

• BIOS, HDD passwords, Full-Disk Encryption PINs etc.

• Some BIOS’es didn’t clear keyboard buffer

• Bypassing Pre-Boot Authentication Passwords

• chipsec_main -m common.bios_kbrd_buffer

Pre-Boot Passwords Exposure

http://www.slideshare.net/endrazine/defcon-16-bypassing-preboot-authentication-passwords-by-instrumenting-the-bios-keyboard-buffer-practical-low-level-attacks-against-x86-preboot-authentication-software

BIOS Attack Surface: “ROM” Write Protection

System
FW/BIOS

SPI Flash
Protection

BIOS
Update

SMRAM
Protection

Hardware

Config.

SMI
Handlers

Secure
Boot

BIOS
Settings
(NVRAM,
Variables)

…

BIOS Write Protection in SPI Flash Memory

• Often still not properly enabled on many systems

• SMM based write protection of entire BIOS region is often not used:
BIOS_CONTROL[SMM_BWP]

• If SPI Protected Ranges (mode agnostic) are used (defined by PR0-
PR4 in SPI MMIO), they often don’t cover entire BIOS & NVRAM

• Some platforms use SPI device specific WP protection but only for
boot block/startup code or SPI Flash descriptor region

• Persistent BIOS Infection (used coreboot’s flashrom on legacy BIOS)

• Evil Maid Just Got Angrier: Why FDE with TPM is Not Secure on Many Systems

• BIOS Chronomancy: Fixing the Static Root of Trust for Measurement

• A Tale Of One Software Bypass Of Windows 8 Secure Boot

• Mitigation: BIOS_CONTROL[SMM_BWP] = 1 and SPI PRx

•chipsec_main --module common.bios_wp

• Or Copernicus from MITRE

SPI Flash (BIOS) Write Protection is Still a Problem

http://phrack.org/issues/66/7.html
http://flashrom.org/Flashrom
https://cansecwest.com/slides/2013/Evil Maid Just Got Angrier.pdf
https://media.blackhat.com/us-13/US-13-Butterworth-BIOS-Security-Slides.pdf
https://media.blackhat.com/us-13/us-13-Bulygin-A-Tale-of-One-Software-Bypass-of-Windows-8-Secure-Boot-Slides.pdf
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about

The Problem

chipsec_main.py --module common.bios_wp

Modifying BIOS Firmware in SPI Flash Memory

From Analytics, and Scalability, and UEFI Exploitation by Teddy Reed

Patch attempts to enable BIOS write protection (sets BIOS_CONTROL[BLE]).

Picked up by Subzero

http://prosauce.org/storage/slides/Infiltrate2014-Analytics-Scalability-UEFI-Exploitation.pdf
https://github.com/theopolis/subzero

SPI Flash Write Protection

• Some systems write-protect BIOS by disabling BIOS Write-Enable
(BIOSWE) and setting BIOS Lock Enable (BLE) but don’t use SMM
based write-protection BIOS_CONTROL[SMM_BWP]

• SMI event is generated when Update SW writes BIOSWE=1

• Possible attack against this configuration is to block SMI events

• E.g. disable all chipset sources of SMI: clear SMI_EN[GBL_SMI_EN] if
BIOS didn’t lock SMI config: Setup for Failure: Defeating SecureBoot

• Another variant is to disable specific TCO SMI source used for
BIOSWE/BLE (clear SMI_EN[TCO_EN] if BIOS didn’t lock TCO config.)

• Mitigation: BIOS_CONTROL[SMM_BWP] = 1 and lock SMI config

•chipsec_main --module common.bios_smi

SMI Suppression Attack Variants

SPI Flash Write Protection

• Some BIOS rely on SPI Protected Range (PR0-PR4 registers in SPI
MMIO) to provide write protection of regions of SPI Flash

• SPI Flash Controller configuration including PRx has to be locked
down by BIOS via Flash Lockdown

• If BIOS doesn’t lock SPI Controller configuration (by setting
FLOCKDN bit in HSFSTS SPI MMIO register), malware can disable
SPI protected ranges re-enabling write access to SPI Flash

•chipsec_main --module common.spi_lock

Locking SPI Flash Configuration

BIOS Attack Surface: SMRAM Protection

System
FW/BIOS

SPI Flash
Protection

BIOS
Update

SMRAM
Protection

Hardware

Config.

SMI
Handlers

Secure
Boot

BIOS
Settings
(NVRAM,
Variables)

…

Problems With HW Configuration/Protections

• D_LCK bit locks down Compatible SMM space (a.k.a. CSEG)
configuration (SMRAMC)

• SMRAMC[D_OPEN]=0 forces access to legacy SMM space
decode to system bus rather than to DRAM where SMI
handlers are when CPU is not in System Management
Mode (SMM)

• When D_LCK is not set by BIOS, SMM space decode can be
changed to open access to CSEG when CPU is not in SMM:
Using CPU SMM to Circumvent OS Security Functions

• Also Using SMM For Other Purposes

• chipsec_main –-module common.smm

Unlocked Compatible/Legacy SMRAM

Compatible SMM Space: Normal Decode

0xBFFFF

Compatible SMRAM (CSEG)
SMM access to

CSEG is decoded to

DRAM, non-SMM

access is sent to

system bus0xA0000

Non SMM

access

SMRAMC [D_LCK] = 1

SMRAMC [D_OPEN] = 0

Source: Using CPU SMM to Circumvent OS Security Functions, Using SMM For Other Purposes

http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf
http://phrack.org/issues/65/7.html

Compatible SMM Space: Unlocked

0xBFFFF

Compatible SMRAM (CSEG)
Non-SMM access to

CSEG is decoded to

DRAM where SMI

handlers can be

modified0xA0000

Non SMM

access

SMRAMC [D_LCK] = 0

SMRAMC [D_OPEN] = 1

Source: Using CPU SMM to Circumvent OS Security Functions, Using SMM For Other Purposes

http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf
http://phrack.org/issues/65/7.html

Problems With HW Configuration/Protections

• Attacking SMM Memory via Intel Cache Poisoning

• Getting Into the SMRAM: SMM Reloaded

• CPU executes from cache if memory type is cacheable

• Ring0 exploit can make SMRAM cacheable (variable MTRR)

• Ring0 exploit can then populate cache-lines at SMBASE with
SMI exploit code (ex. modify SMBASE) and trigger SMI

• CPU upon entering SMM will execute SMI exploit from cache

• CPU System Management Range Registers (SMRR) forcing UC
and blocking access to SMRAM when CPU is not in SMM

• BIOS has to enable SMRR

• chipsec_main –-module common.smrr

SMRAM “Cache Poisoning” Attacks

http://www.invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://cansecwest.com/csw09/csw09-duflot.pdf

Problems With HW Configuration/Protections

• Remap Window is used to reclaim DRAM range below 4Gb
“lost” for Low MMIO

• Defined by REMAPBASE/REMAPLIMIT registers in Memory
Controller PCIe config. space

• MC remaps Reclaim Window access to DRAM below 4GB
(above “Top Of Low DRAM”)

• If not locked, OS malware can reprogram target of reclaim to
overlap with SMRAM (or something else)

• Preventing & Detecting Xen Hypervisor Subversions

• BIOS has to lock down Memory Map registers including
REMAP*, TOLUD/TOUUD

• chipsec_main --module remap

SMRAM Memory Remapping/Reclaim Attack

Memory Remapping: Normal Memory Map

Memory Reclaim/Remap

Range

Low MMIO Range

TOLUD

4GB

SMRAM

REMAPBASE

REMAPLIMIT

Access is

remapped to

DRAM range ‘lost’

to MMIO (memory

reclaimed)

Access

Source: Preventing & Detecting Xen Hypervisor Subversions

http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf

Memory Remapping: Attacking SMRAM

Memory Reclaim/Remap

Range

Low MMIO Range

TOLUD

4GB

SMRAM

REMAPBASE

REMAPLIMIT

Target range of

memory reclaim

changed to

SMRAM

Access

Source: Preventing & Detecting Xen Hypervisor Subversions

http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf

Problems With HW Configuration/Protections

• If BIOS doesn’t lock down memory config, boundary separating
DRAM and MMIO (TOLUD) can be moved somewhere else. E.g.
malware can move it below SMRAM to make SMRAM decode as
MMIO

• Graphics Aperture can then be overlapped with SMRAM and used to
redirect MMIO access to memory range defined by PTE entries in
Graphics Translation Table (GTT)

• When CPU accesses protected SMRAM range to execute SMI
handler, access is redirected to unprotected memory range
somewhere else in DRAM

• Similarly to Remapping Attack, BIOS has to lock down HW memory
configuration (i.e. TOLUD) to mitigate this attack

• System Management Mode Design and Security Issues (GART)

SMRAM Redirection via Graphics Aperture

Access in SMM : Normal Memory Map

Low MMIO Range

TOLUD

4GB

SMRAM CPU executes
instructions (mov)

from SMRAM normallymov ebx,imm32

Code fetch at

SMBASE in

SMM

Graphics Aperture

GTT MMIO

Access to GFx

Aperture

GFx Memory

Access to GFx aperture
(MMIO) is redirected to GFx

DRAM range per GTT PTEs

GTT PTEs

Source: System Management Mode Design and Security Issues

http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf

Access in SMM : GFx Aperture Redirection

Low MMIO Range

TOLUD

4GB

SMRAM

CPU executes instructions
from fake SMRAM redirected
to by MMIO GFx Aperture

per malicious GTT PTEs

mov ebx,imm32

Code fetch at

SMBASE in

SMM
Graphics Aperture

GTT MMIO

GFx Memory

Fake SMRAM

GTT PTEs

Source: System Management Mode Design and Security Issues

http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf

Problems With HW Configuration/Protections

• SMRAM has to be protected from DMA Attack

• Protection from inbound DMA access is guaranteed by
programming TSEG range

• When BIOS doesn’t lock down TSEG range configuration,
malware can move TSEG outside of where actual SMRAM is

• Then program one of DMA capable devices (e.g. GPU device)
or Graphics Aperture to access SMRAM

• Programmed I/O accesses: a threat to Virtual Machine Monitors?

• System Management Mode Design and Security Issues

• BIOS has to lock down configuration required to define range
protecting SMRAM from inbound DMA access (e.g. TSEG range)

• chipsec_main --module smm_dma

DMA/GFx Aperture Attacks Against SMRAM

DMA Access to SMRAM: Normal Memory Map

Low MMIO Range

TOLUD

4GB

SMRAM

DMA access to SMRAM

is blocked due to TSEG

covering SMRAM
TSEG Base

GFx Mem Base

DMA Access to SMRAM: DMA Attacks

Low MMIO Range

TOLUD

4GB

SMRAM

DMA access to SMRAM

is not blocked as TSEG

Base moved

Graphics Aperture

GTT MMIO

Access to GFx Aperture is

redirected to SMRAM

TSEG Base
GFx Mem Base

GTT PTEs

BIOS Attack Surface: SMI Handlers

System
FW/BIOS

SPI Flash
Protection

BIOS
Update

SMRAM
Protection

Hardware

Config.

SMI
Handlers

Secure
Boot

BIOS
Settings
(NVRAM,
Variables)

…

Legacy SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB

Source: BIOS SMM Privilege Escalation Vulnerabilities

http://www.securityfocus.com/archive/1/505590

Legacy SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB

Code fetch

in SMM

Source: BIOS SMM Privilege Escalation Vulnerabilities

http://www.securityfocus.com/archive/1/505590

Legacy SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB

0xF8070: payload0F000:08070 =
0xF8070 PA

Code fetch

in SMM

Source: BIOS SMM Privilege Escalation Vulnerabilities

http://www.securityfocus.com/archive/1/505590

Legacy SMI Handlers Calling Out of SMRAM

• OS level exploit stores payload in F-segment below 1MB
(0xF8070 Physical Address)

• Exploit has to also reprogram PAM for F-segment

• Then triggers “SW SMI” via APMC port (I/O 0xB2)

• SMI handler does CALL 0F000:08070 in SMM

• BIOS SMM Privilege Escalation Vulnerabilities (14 issues in
just one SMI Handler)

• System Management Mode Design and Security Issues

Branch Outside of SMRAM

Function Pointers Outside SMRAM (DXE SMI)

Phys Memory
SMRAM

mov ACPINV+x, %rax

call *0x18(%rax)

ACPI NV Area

payload

1. Read function

pointer from ACPI

NVS memory

(outside SMRAM)

Pointer to payload 2. Call function

pointer (payload

outside SMRAM)

Source: Attacking Intel BIOS

https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf

BIOS Attack Surface: BIOS Update

System
FW/BIOS

SPI Flash
Protection

BIOS
Update

SMRAM
Protection

Hardware

Config.

SMI
Handlers

Secure
Boot

BIOS
Settings
(NVRAM,
Variables)

…

UEFI BIOS Update Problems

• Unsigned sections within BIOS update (e.g. boot splash
logo BMP image)

• BIOS displayed the logo before SPI Flash write-
protection was enabled

• EDK ConvertBmpToGopBlt() integer overflow

followed by memory corruption during DXE while parsing
BMP image

• Copy loop overwrote #PF handler and triggered #PF

• Attacking Intel BIOS

Parsing of Unsigned BMP Image in UEFI FW Update Binary

https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf

UEFI BIOS Update Problems

• Legacy BIOS with signed BIOS update

• OS schedules BIOS update placing new BIOS image in
DRAM split into RBU packets

• Upon reboot, BIOS Update SMI Handler reconstructs BIOS
image from RBU packets in SMRAM and verifies signature

• Buffer overflow (memcpy with controlled size/dest/src)

when copying RBU packet to a buffer with reconstructed
BIOS image

• BIOS Chronomancy: Fixing the Core Root of Trust for Measurement

• Defeating Signed BIOS Enforcement

RBU Packet Parsing Vulnerability

https://media.blackhat.com/us-13/US-13-Butterworth-BIOS-Security-Slides.pdf
http://www.ekoparty.org/archive/2013/charlas/Kallenberg/DefeatingSignedBios-EkoParty_2013_v1.pptx

UEFI BIOS Update Problems

• Attacker sets up a capsule in memory, and when capsule
update is called, BIOS parses the data provided by the
attacker.

• Capsule Coalescing – when the blocks of a capsule are
made contiguous, an integer overflow allowed
attackers to control a memory copy operation.

• Capsule Envelop – when blocks of the capsule are
parsed, an integer overflow allowed attackers to cause
a small allocation and large memory copy operation.

• Extreme Privilege Escalation on Windows 8/UEFI Systems

Capsule Update Issues

BIOS Attack Surface: Hardware Configuration

System
FW/BIOS

SPI Flash
Protection

BIOS
Update

SMRAM
Protection

Hardware

Config.

SMI
Handlers

Secure
Boot

BIOS
Settings
(NVRAM,
Variables)

…

Problems With HW Configuration/Protections

• “Top Swap” mode allows fault-tolerant update of the BIOS boot-block

• Enabled by BUC[TS] in Root Complex MMIO range

• Chipset inverts A16 line (A16-A20 depending on the size of boot-block) of
the address targeting ROM, e.g. when CPU fetches reset vector on reboot

• Thus CPU executes from 0xFFFEFFF0 inside “backup” boot-block rather
than from 0xFFFFFFF0

• Top Swap indicator is not reset on reboot (requires RTC reset)

• When not locked/protected, malware can redirect execution of reset
vector to alternate (backup) boot-block

• BIOS Boot Hijacking and VMware Vulnerabilities Digging

• BIOS has to lock down Top Swap configuration (BIOS Interface Lock in
General Control & Status register) & protect swap boot-block range in SPI

• chipsec_main --module common.bios_ts

BIOS Top Boot-Block Swap Attack

BIOS Top Boot-Block Swap Attack

Original BIOS Boot-Block

0xFFFFFFF0
CPU normally fetches

reset vector at FFFFFFF0

0xFFFEFFF0

Alternate BIOS Boot-Block

(BUC[TS] = 1)

When TS is not locked:

• Malware sets BUC[TS]

• Out of reset, CPU starts

@ reset vector

• Chipset inverts A16

• CPU fetches instr. from

alternate BB (at

FFFEFFF0) instead of

FFFFFFF0

Source: BIOS Boot Hijacking and VMware Vulnerabilities Digging

http://powerofcommunity.net/poc2007/sunbing.pdf

Do BIOS Attacks Require Kernel Privileges?

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

OS Kernel

OS Driver

Malicious App

A matter of finding

legitimate signed kernel

driver which can be used

on behalf of user-mode

exploit as a confused

deputy.

RWEverything driver

signed for Windows

64bit versions (co-

discovered with

researchers from MITRE)

Best Practices

• Enable HW protections for the BIOS firmware and SMRAM

• Have a recovery mechanism for BIOS firmware and essential configuration

• Minimize UEFI variables attack surface

• White-list UEFI variables in OS kernel or in SetVariable SMI handler

• Don’t store sensitive data in SPI flash

• Consider all NVRAM contents malicious when handling them in FW

• Thoroughly validate input to SMI handlers from runtime OS

• Assume all input to SMI handlers malicious (variables, CMOS memory, ACPI
tables, ACPI NVS, CPU GP registers, HW registers..)

• Sign firmware updates (UEFI capsules on reset/S3)

• Use secure defaults for static and dynamic Pcd settings

• Sanitize passwords/keys from DRAM

• Frequently sync with edk/UDK

Key Takeaways

• Configuring hardware and firmware securely is not trivial

• Use available tools to test secure hardware configuration

 CHIPSEC framework available now!

 MITRE Copernicus

• Windows Hardware Security Test Interface (HSTI) sounds like

a good idea

• UEFI Forum has created security sub-teams

 Newly formed USRT (UEFI Security Response Team)

 USST (UEFI Security) and PSST (PI Security) sub-teams

https://github.com/chipsec/chipsec
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.uefi.org/sites/default/files/resources/UEFI_Summerfest_2013_-_Microsoft_Hardware_Security_Test_Interface.pdf

THANK YOU!

Ref: BIOS Security Guidelines / Best Practices

• CHIPSEC framework: https://github.com/chipsec/chipsec

• MITRE Copernicus tool

• NIST BIOS Protection Guidelines (SP 800-147 and SP 800-147B)

• IAD BIOS Update Protection Profile

• Windows Hardware Certification Requirements

• UEFI Forum sub-teams: USST (UEFI Security) and PSST (PI Security)

• UEFI Firmware Security Best Practices

• BIOS Flash Regions

• UEFI Variables in Flash (UEFI Variable Usage Technical Advisory)

• Capsule Updates

• SMRAM

• Secure Boot

https://github.com/chipsec/chipsec
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf
http://csrc.nist.gov/publications/drafts/800-147b/draft-sp800-147b_july2012.pdf
https://www.niap-ccevs.org/pp/pp_bios_v1.0.pdf
http://download.microsoft.com/download/A/D/F/ADF5BEDE-C0FB-4CC0-A3E1-B38093F50BA1/windows8-hardware-cert-requirements-system.pdf
http://www.uefi.org/sites/default/files/resources/2014_UEFI_Plugfest_06_Phoenix.pdf

Research in Platform HW/FW Attacks
• Security Issues Related to Pentium System Management Mode (CSW 2006)

• Implementing and Detecting an ACPI BIOS Rootkit (BlackHat EU 2006)

• Implementing and Detecting a PCI Rootkit (BlackHat DC 2007)

• Programmed I/O accesses: a threat to Virtual Machine Monitors? (PacSec 2007)

• Hacking the Extensible Firmware Interface (BlackHat USA 2007)

• BIOS Boot Hijacking And VMWare Vulnerabilities Digging (PoC 2007)

• Bypassing pre-boot authentication passwords (DEF CON 16)

• Using SMM for "Other Purposes“ (Phrack65)

• Persistent BIOS Infection (Phrack66)

• A New Breed of Malware: The SMM Rootkit (BlackHat USA 2008)

• Preventing & Detecting Xen Hypervisor Subversions (BlackHat USA 2008)

• A Real SMM Rootkit: Reversing and Hooking BIOS SMI Handlers (Phrack66)

• Attacking Intel BIOS (BlackHat USA 2009)

• Getting Into the SMRAM: SMM Reloaded (CSW 2009, CSW 2009)

• Attacking SMM Memory via Intel Cache Poisoning (ITL 2009)

• BIOS SMM Privilege Escalation Vulnerabilities (bugtraq 2009)

• System Management Mode Design and Security Issues (IT Defense 2010)

• Analysis of building blocks and attack vectors associated with UEFI (SANS Institute)

• (U)EFI Bootkits (BlackHat USA 2012 @snare, SaferBytes 2012 Andrea Allievi, HITB 2013)

• Evil Maid Just Got Angrier (CSW 2013)

• A Tale of One Software Bypass of Windows 8 Secure Boot (BlackHat USA 2013)

• BIOS Chronomancy (NoSuchCon 2013, BlackHat USA 2013, Hack.lu 2013)

• Defeating Signed BIOS Enforcement (PacSec 2013, Ekoparty 2013)

• UEFI and PCI BootKit (PacSec 2013)

• Meet ‘badBIOS’ the mysterious Mac and PC malware that jumps airgaps (#badBios)

• All Your Boot Are Belong To Us (CanSecWest 2014 Intel and MITRE)

• Setup for Failure: Defeating Secure Boot (Syscan 2014)

• Setup for Failure: More Ways to Defeat Secure Boot (HITB 2014 AMS)

• Analytics, and Scalability, and UEFI Exploitation (INFILTRATE 2014)

• PC Firmware Attacks, Copernicus and You (AusCERT 2014)

• Extreme Privilege Escalation (BlackHat USA 2014, paper)

cansecwest.com/slides06/csw06-duflot.ppt
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
http://www.blackhat.com/presentations/bh-dc-07/Heasman/Paper/bh-dc-07-Heasman-WP.pdf
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/pacsec2007-duflot-papier.pdf
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
http://powerofcommunity.net/poc2007/sunbing.pdf
http://www.slideshare.net/endrazine/defcon-16-bypassing-preboot-authentication-passwords-by-instrumenting-the-bios-keyboard-buffer-practical-low-level-attacks-against-x86-preboot-authentication-software
http://www.phrack.com/issues.html?issue=65&id=7
http://www.phrack.com/issues.html?issue=66&id=7
http://www.hakim.ws/BHUSA08/speakers/Embleton_Sparks_SMM_Rookits/BH_US_08_Embleton_Sparks_SMM_Rootkits_Slides.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.phrack.com/issues.html?issue=66&id=11
http://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
http://cansecwest.com/csw09/csw09-duflot.pdf
http://www.ssi.gouv.fr/IMG/pdf/Cansec_final.pdf
http://www.invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://www.securityfocus.com/archive/1/505590
http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf
http://www.sans.org/reading-room/whitepapers/services/analysis-building-blocks-attack-vectors-unified-extensible-firmware-34215?show=analysis-building-blocks-attack-vectors-unified-extensible-firmware-34215&cat=services
http://ho.ax/De_Mysteriis_Dom_Jobsivs_Black_Hat_Paper.pdf
http://www.saferbytes.it/2012/09/18/uefi-technology-say-hello-to-the-windows-8-bootkit/
http://www.quarkslab.com/dl/13-04-hitb-uefi-dreamboot.pdf
http://cansecwest.com/slides/2013/Evil Maid Just Got Angrier.pdf
https://www.blackhat.com/us-13/briefings.html
http://www.nosuchcon.org/talks/2013/D2_01_Butterworth_BIOS_Chronomancy.pdf
https://media.blackhat.com/us-13/US-13-Butterworth-BIOS-Security-Slides.pdf
archive.hack.lu/2013/BIOS_Chronomancy-Hack.lu_2013_v1.pptx‎
http://pacsec.jp/agenda.html
http://www.ekoparty.org/archive/2013/charlas/Kallenberg/DefeatingSignedBios-EkoParty_2013_v1.pptx
http://pacsec.jp/agenda.html
http://arstechnica.com/security/2013/10/meet-badbios-the-mysterious-mac-and-pc-malware-that-jumps-airgaps/
https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf
https://cansecwest.com/slides/2014/AllYourBoot_csw14-mitre-final.pdf
http://syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip
http://haxpo.nl/wp-content/uploads/2014/01/D1T2-More-Ways-to-Defeat-Secure-Boot.pdf
http://prosauce.org/storage/slides/Infiltrate2014-Analytics-Scalability-UEFI-Exploitation.pdf
http://conference.auscert.org.au/gfx/speakers/presentation-slides/1425_xeno_kovah.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Kallenberg-Extreme-Privilege-Escalation-On-Windows8-UEFI-Systems.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Kallenberg-Extreme-Privilege-Escalation-On-Windows8-UEFI-Systems-WP.pdf

