Evil Maid Just Got Angrier
Why Full-Disk Encryption With TPM is Insecure on Many Systems

Yuriy Bulygin (@c7zero)

CanSecWest 2013

Outline

UEFI BIOS

Outline

UEFI BIOS

Measured/Trusted Boot

Outline

UEFI BIOS
Measured/Trusted Boot

The Real World: Bypassing Measured/Trusted Boot

Outline

UEFI BIOS
Measured/Trusted Boot
The Real World: Bypassing Measured/Trusted Boot

Windows BitLocker with TPM

Outline

UEFI BIOS

Measured/Trusted Boot

The Real World: Bypassing Measured/Trusted Boot
Windows BitLocker with TPM

Secure Boot

Outline

UEFI BIOS

Measured/Trusted Boot

The Real World: Bypassing Measured/Trusted Boot
Windows BitLocker with TPM

Secure Boot

@A What Else?

Outline

UEFI BIOS

Measured/Trusted Boot

The Real World: Bypassing Measured/Trusted Boot
Windows BitLocker with TPM

Secure Boot

@A What Else?

Anything We Can Do?

Outline

UEFI BIOS

Legacy BIOS

o 5 = = £ DA

Legacy BIOS

CPU Reset vector in ROM — legacy boot block
Basic CPU, chipset initialization —

Initialize Cache-as-RAM, load and run from cache —
Initialize DIMMs, create address map.. —
Enumerate PCle devices.. —

Execute Option ROMs on expansion cards

Load and execute MBR —

2nd Stage Boot Loader / OS Loader — OS

Legacy BIOS

CPU Reset vector in ROM — legacy boot block
Basic CPU, chipset initialization —

Initialize Cache-as-RAM, load and run from cache —
Initialize DIMMs, create address map.. —
Enumerate PCle devices.. —

Execute Option ROMs on expansion cards

Load and execute MBR —

2nd Stage Boot Loader / OS Loader — OS

or a Full-Disk Encryption Application

Legacy BIOS

CPU Reset vector in ROM — legacy boot block
Basic CPU, chipset initialization —

Initialize Cache-as-RAM, load and run from cache —
Initialize DIMMs, create address map.. —
Enumerate PCle devices.. —

Execute Option ROMs on expansion cards

Load and execute MBR —

2nd Stage Boot Loader / OS Loader — OS

or a Full-Disk Encryption Application

or a Bootkit

Security of Legacy BIOS

Security of Legacy BIOS

Huh?

o 5 = = £ DA

Security of Legacy BIOS

Huh?
m Old architecture
m Unsigned BIOS updates by user-mode applications
m Unsigned Option ROMs
m Unprotected configuration
m SMI Handlers.. have issues [18]

m No Secure Boot

Unified Extensible Firmware Interface (UEFI)

CPU reset vector in ROM —

Startup/Security Phase (SEC) —

Pre-EFI Initialization (PEI) Phase (chipset/CPU initialization) —
Driver Execution Environment (DXE) Phase —

OEM UEFI applications (diagnostics, update) —

Boot Device Selection (BDS) Phase — UEFI Boot Manager

OS Boot Manager / Loader or Built-in UEFI Shell

Security of UEFI BIOS

m UEFI provides framework for signing UEFI binaries including native
option ROMs

Signed capsule update
Framework for TCG measured (trusted) boot
UEFI 2.3.1 defines secure (verified, authenticated) boot

Protected configuration (authenticated variables, boot-time only..)

SEC+PEI encapsulate security critical functions (recovery, TPM init,
capsule update, configuration locking, SMRAM init/protection..)

So is UEFI BIOS secure?

UEFI specifies all needed pieces but it's largely up to platform
manufacturers to use them as well as protections offered by hardware

So is UEFI BIOS secure?

UEFI specifies all needed pieces but it's largely up to platform
manufacturers to use them as well as protections offered by hardware J

What good are your signed UEFI capsules if firmware ROM is writeable by
everyone? J

Outline

Measured/Trusted Boot

Measured (Trusted) Boot

Example: TPM Based Full-Disk Encryption Solutions
m Pre-OS firmware components are hashed (measured)
m Measurements are initiated by startup firmware (Static CRTM)
m Measurements are stored in a secure location (TPM PCRs)

m Secrets (encryption keys) are encrypted by the TPM and bounded to
PCR measurements (sealed)

Can only be decrypted (unsealed) with same PCR measurements
stored in the TPM

m This chain guarantees that firmware hasn't been tampered with

Windows BitLocker

® Encrypting the entire Windows operating system drive
on the hard disk. BitLocker encrypts all user files and
system files on the operating system drive, including the
swap files and hibernation files.

¢ Checking the integrity of early boot components and
boot configuration data. On computers that have a
Trusted Platform Module (TPM) version 1.2, BitLocker uses
the enhanced security capabilities of the TPM to help ensure
that your data is accessible only if the computer's boot
components appear unaltered and the encrypted disk is
located in the original computer.

http://technet.microsoft.com/en-us/library/ee449438(v=ws.10) .aspx

http://technet.microsoft.com/en-us/library/ee449438(v=ws.10).aspx

BitLocker with Trusted Platform Module

m Volume Key used to encrypt drive contents is encrypted by the TPM
based on measurements of pre-OS firmware

m If any pre-OS firmware component was tampered with, TPM
wouldn’t decrypt the key

m Ensures malicious BIOS/OROM/MBR doesn't log the PIN or fake
recovery/PIN screen

m Implementation of a Measured Boot

Typical Chain of Measurements

Typical Chain of Measurements

® Initial startup FW at CPU reset vector

Typical Chain of Measurements

® Initial startup FW at CPU reset vector
PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]

Typical Chain of Measurements

® Initial startup FW at CPU reset vector
PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs

Typical Chain of Measurements

® Initial startup FW at CPU reset vector

PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs
. SMI Handlers, Static ACPI Tables

Typical Chain of Measurements

® Initial startup FW at CPU reset vector

PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs
. SMI Handlers, Static ACPI Tables

PCR[1] + SMBIOS, ACPI Tables, Platform Configuration Data

Typical Chain of Measurements

® Initial startup FW at CPU reset vector
PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs
. SMI Handlers, Static ACPI Tables
PCR[1] + SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2] < EFI Drivers from Expansion Cards [Option ROMs]

Typical Chain of Measurements

® Initial startup FW at CPU reset vector
PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs
. SMI Handlers, Static ACPI Tables
PCR[1] + SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2] < EFI Drivers from Expansion Cards [Option ROMs]
PCR[3] < [Option ROM Data and Configuration]

Typical Chain of Measurements

® Initial startup FW at CPU reset vector
PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs
. SMI Handlers, Static ACPI Tables
PCR[1] + SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2] < EFI Drivers from Expansion Cards [Option ROMs]
PCR[3] < [Option ROM Data and Configuration]
PCR[4] < UEFI OS Loader, UEFI Applications [MBR]

Typical Chain of Measurements

® Initial startup FW at CPU reset vector

PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs
. SMI Handlers, Static ACPI Tables

PCR[1] + SMBIOS, ACPI Tables, Platform Configuration Data

PCR[2] < EFI Drivers from Expansion Cards [Option ROMs]

PCR[3] < [Option ROM Data and Configuration]

PCR[4] < UEFI OS Loader, UEFI Applications [MBR]

PCRI[5]| < EFI Variables, GUID Partition Table [MBR Partition Table]

Typical Chain of Measurements

® Initial startup FW at CPU reset vector
PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs
. SMI Handlers, Static ACPI Tables
PCR[1] + SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2] < EFI Drivers from Expansion Cards [Option ROMs]
PCR[3] < [Option ROM Data and Configuration]
PCR[4] < UEFI OS Loader, UEFI Applications [MBR]
PCRI[5]| < EFI Variables, GUID Partition Table [MBR Partition Table]
PCRI[6 | < State Transitions and Wake Events

Typical Chain of Measurements

® Initial startup FW at CPU reset vector
PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs
. SMI Handlers, Static ACPI Tables
PCR[1] + SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2] < EFI Drivers from Expansion Cards [Option ROMs]
PCR[3] < [Option ROM Data and Configuration]
PCR[4] < UEFI OS Loader, UEFI Applications [MBR]
PCRI[5]| < EFI Variables, GUID Partition Table [MBR Partition Table]
PCRI[6 | < State Transitions and Wake Events
PCR[7 | <~ UEFI Secure Boot keys (PK/KEK) and variables (dbx..)

Typical Chain of Measurements

® Initial startup FW at CPU reset vector
PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs
. SMI Handlers, Static ACPI Tables
PCR[1] + SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2] < EFI Drivers from Expansion Cards [Option ROMs]
PCR[3] < [Option ROM Data and Configuration]
PCR[4] < UEFI OS Loader, UEFI Applications [MBR]
PCRI[5]| < EFI Variables, GUID Partition Table [MBR Partition Table]
PCRI[6 | < State Transitions and Wake Events
PCR[7 | <~ UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8] <~ TPM Aware OS specific hashes [NTFS Boot Sector]

Typical Chain of Measurements

® Initial startup FW at CPU reset vector
PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs
. SMI Handlers, Static ACPI Tables
PCR[1] + SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2] < EFI Drivers from Expansion Cards [Option ROMs]
PCR[3] < [Option ROM Data and Configuration]
PCR[4] < UEFI OS Loader, UEFI Applications [MBR]
PCRI[5]| < EFI Variables, GUID Partition Table [MBR Partition Table]
PCRI[6 | < State Transitions and Wake Events
PCR[7 | <~ UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8] <~ TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9] «~ TPM Aware OS specific hashes [NTFS Boot Block]

Typical Chain of Measurements

® Initial startup FW at CPU reset vector
PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs
. SMI Handlers, Static ACPI Tables
PCR[1] + SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2] < EFI Drivers from Expansion Cards [Option ROMs]
PCR[3] < [Option ROM Data and Configuration]
PCR[4] < UEFI OS Loader, UEFI Applications [MBR]
PCRI[5]| < EFI Variables, GUID Partition Table [MBR Partition Table]
PCRI[6 | < State Transitions and Wake Events
PCR[7 | <~ UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8] <~ TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9] «~ TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] < [Boot Manager]

Typical Chain of Measurements

® Initial startup FW at CPU reset vector
PCR[0] «~ CRTM, UEFI Firmware, PEI/DXE [BIOS]
. UEFI Boot and Runtime Services, Embedded EFI OROMs
. SMI Handlers, Static ACPI Tables
PCR[1] + SMBIOS, ACPI Tables, Platform Configuration Data
PCR[2] < EFI Drivers from Expansion Cards [Option ROMs]
PCR[3] < [Option ROM Data and Configuration]
PCR[4] < UEFI OS Loader, UEFI Applications [MBR]
PCRI[5]| < EFI Variables, GUID Partition Table [MBR Partition Table]
PCRI[6 | < State Transitions and Wake Events
PCR[7 | <~ UEFI Secure Boot keys (PK/KEK) and variables (dbx..)
PCR[8] <~ TPM Aware OS specific hashes [NTFS Boot Sector]
PCR[9] <~ TPM Aware OS specific hashes [NTFS Boot Block]
PCR[10] < [Boot Manager]
PCR[11] « BitLocker Access Control

Outline

The Real World: Bypassing Measured/Trusted Boot

The Problem

Startup UEFI BIOS firmware at reset vector is inherently trusted
To initiate chain of measurements or signature verification

But it's firmware and can be updated

The Problem

Startup UEFI BIOS firmware at reset vector is inherently trusted
To initiate chain of measurements or signature verification

But it's firmware and can be updated

If subverted, all measurements in the chain can be forged allowing
firmware modifications to go undetected

The Solution is Simple

Just let BitLocker rely on all platform manufacturers

The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware

The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates

The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software

The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI

BIOS updates, protect authorized update software, update the boot block
(SEC/PEI code) securely

The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software, update the boot block

(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor

The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software, update the boot block

(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor, lock the SPI controller configuration

The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware, allow only signed UEFI
BIOS updates, protect authorized update software, update the boot block
(SEC/PEI code) securely, correctly program and protect SPI Flash
descriptor, lock the SPI controller configuration, and not introduce a single
bug in all of this, of course.

v

Follow The Guidelines

NH Special Publication 800-147

National Institute of
Standards and Technology

U.5. Department of Commerce

BIOS Protection Guidelines

Recommendations of the National Institute
of Standards and Technology

David Cooper
William Polk

Andrew Regenscheid
Murugiah Souppaya

SPI Flash / BIOS Protections

Write Protection of BIOS Region in SPI Flash
Read/Write Protection via SPI Protected Range Registers

SPI Flash Region Access Control Defined in Flash Descriptor

Write Protecting BIOS Region in SPI Flash

13.1.32 BIOS_CNTL—BIOS Control Register
(LPC I/F—D31:F0)

Offset Address: DCh Attribute: R/WLO, R/W, RO
Default Value: 20h Size: 8 bit
Lockable: No Power Well: Core

Bit Description

7:6 | Reserved

SMM BIOS Write Protect Disable (SMM_BWP)— R/WLO.
This bit set defines when the BIOS region can be written by the host.
5 0 = BIOS region SMM protection is disabled. The BIOS Region is writable regardless if
processors are in SMM ar not. (Set this field to 0 for legacy behavior)
1 = BIOS region SMM protection is enabled. The BIOS Region is not writable unless all
processors are in SMM.

BIOS Lock Enable (BLE) — R/WLO.

0 = Setting the BIOSWE will not cause SMIs.

1 = Enables setting the BIOSWE bit to cause SMIs. Once set, this bit can only be
cleared by a PLTRST#

BIOS Write Enable (BIOSWE) — R/W.
0 = Only read cycles result in Firmware Hub I/F cycles.
0 1 = Access to the BIOS space is enabled for both read and write cycles, When this bit is
written from a 0 to a 1 and BIOS Lock Enable (BLE) is also set, an SMI# is
generated. This ensures that only SMI code can update BIOS.

http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html

http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html

SPI Protected Range Registers

21.1.13 PRO—

Protected Range 0 Register

(SPI Memory Mapped Configuration Registers)

Memory Address: SPIBAR + 74h Attribute: R/W
Default Value: 00000000h Size: 32 bits
Note: This register can not be written when the FLOCKDN bit is set to 1.
Bit Description
Write Protection Enable — R/W. When set, this bit indicates that the Base and Limit
31 fields in this register are valid and that writes and erases directed to addresses between
them (inclusive) must be blocked by hardware. The base and limit fields are ignored
when this bit is cleared.
30:29 | Reserved
Protected Range Limit — R/W. This field corresponds to FLA address bits 24:12 and
28:16 specifies the upper limit of the protected range. Address bits 11:0 are assumed to be
° FFFh for the limit comparison. Any address greater than the value programmed in this
field is unaffected by this protected range.
Read Protection Enable — R/W. When set, this bit indicates that the Base and Limit
15 fields in this register are valid and that read directed to addresses between them
(inclusive) must be blocked by hardware. The base and limit fields are ignored when
this bit is cleared.
14:13 | Reserved
Protected Range Base — R/W. This field corresponds to FLA address bits 24:12 and
12:0 specifies the lower base of the protected range. Address bits 11:0 are assumed to be
. 000h for the base comparison. Any address less than the value programmed in this
field is unaffected by this protected range.

http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html

http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html

Welcome to the Desert of the Real (ASUS P8P67-M PRO)

A
/iSUS System Information

ME |
Motherboard

Manufacturer
Product
Version

Serial Number
BIOS

Manufacturer
Caption

Version

cPU | SPD

ASUSTeK COMPUTER INC.
P8P67-M PRO

Rev X.0x
MT7015054001915

American Megatrends Inc.
04/24/2012
3602

The Solution is Simple

Just let BitLocker rely on all platform manufacturers to protect the UEFI
BIOS from programmable SPI writes by malware,

Let's Just Try to Write to UEFI BIOS, Shall We?

Administrator: Command Prompt

Hey! We've Succeeded!

| Have a Suspicion..

NIST BIOS Protection Guidelines Recap

3.1.3 Integrity Protection

To prevent unintended or malicious modification of the system BIOS outside the authenticated BIOS
update process, the RTU and the system BIOS (excluding configuration data used by the system BIOS
that is stored in non-volatile memory) shall be protected from unintended or malicious modification with
a mechanism that cannot be overridden outside of an authenticated BIOS update. The protection
mechanism shall itself be protected from unauthorized modification.

The authenticated BIOS update mechanism shall be protected from unintended or malicious modification
by a mechanism that is at least as strong as that protecting the RTU and the system BIOS.

The protection mechanism shall protect relevant regions of the system flash memory containing the
system BIOS prior to executing firmware or software that can be modified without using an authenticated
update mechanism or a secure local update mechanism. Protections should be enforced by hardware
mechanisms that are not alterable except by an authorized mechanism.

http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf

http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf

The Solution is Simple

Just let BitLocker rely on all platform manufacturers to
allow only signed UEFI
BIOS updates,

UEFI Updates Aren't Exactly Signed Either

/iSUS ASUS Update

S

x

Update BIOS from file

Selected BIOS file

C:\prv\P8P67-M-PRO-ASUS-3602_s0s.ROM

Browse

BIOS Information

Current BIOS
Model Name
P8P67-M PRO
Version
3602
Release Date
04/24/2012

Selected BIOS
Model Name
PBP67-M PRO
Version
3602

Release Date
04/24/2012

Monitor Update

System
Information

NIST BIOS Protection Guidelines Recap

3.1.1 BIOS Update Authentication

The authenticated BIOS update mechanism employs digital signatures to ensure the authenticity of the
BIOS update image. To update the BIOS using the authenticated BIOS update mechanism, there shall be
a Root of Trust for Update (RTU) that contains a signature verification algorithm and a key store that
includes the public key needed to verify the signature on the BIOS update image. The key store and the
signature verification algorithm shall be stored in a protected fashion on the computer system and shall be
modifiable only using an authenticated update mechanism or a secure local update mechanism as outlined
in Section 3.1.2.

http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf

http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf

The Solution is Simple

Just let BitLocker rely on all platform manufacturers to

protect authorized update software,

Outline

Windows BitLocker with TPM

Angry Evil Maid

Attack Outline Against Encrypted OS Drive
While the owner is not watching and system is shut down..
adversary plugs in and boots into a USB thumb drive

which auto launches exploit directly modifying UEFI BIOS in
unprotected SPI Flash

Gets out until owner notices someone is messing with the system

Upon next boot, patched UEFI BIOS sends expected 'good’
measurements of all pre-boot components to TPM PCRs

@ TPM unseals the encryption key as the measurements are correct

Angry Evil Maid

Booting From Multiple OS Drives?

System has multiple encrypted OS bootable drives (including
bootable USB thumb drives)

OS is loaded while other OS drives are encrypted

Malware compromised loaded OS exploits weak BIOS protections and
modifies UEFI BIOS

When OS is booted from another encrypted drive, compromised UEFI
BIOS submits expected 'good’ measurements to the TPM

TPM unseals OS drive encryption key as measurements are correct

@ OS boots on top of compromised firmwware logging PIN

The Original Boot Block

_10:FFFFFABB CC db BCCh 5 |

_10:FFFFFABC H

_18:FFFFFABC

“10:FFFFFABC out88_Init_PCIEXBAR: ; CODE XREF: _1@:ptr_out88_Init_PCIEXBARYj
_18:FFFFFABC BA 82 moyv al,

_10:FFFFFABE E6 88 out 86h, al ; manufacture's diagnostic checkpoint
_10:FFFFFACO® BE CD FA FF FF noy esi,

_10:FFFFFACS OF 6E FE movd nn7, esi

_10:FFFFFAC8 E9 97 00 60 00 jmp Init PCIEXBAR

_10:FFFFFACD H

_10:FFFFFACD

_10:FFFFFAGD out86_Find_Load_Patch:

_18:FFFFFACF E6 88 out 86h, al 5 manufacture’s diagnostic checkpoint
_10:FFFFFAD1 BE DB FA FF FF moy esi,

_18:FFFFFAD6 BOF &6E FE moud mn?, esi

“10:FFFFFADY EB 3D jmp short ptr_Find_Load_Patch

_10:FFFFFADB H

_10:FFFFFADB BO 088 mou al,

_10:FFFFFADD E6 88 out 86h, al ; manufacture's diagnostic checkpoint
_18:FFFFFADF BE E9 FA FF FF mou esi,

_10:FFFFFAEY OF 6E FE movd mm7, esi

“18:FFFFFAE7 EB 49 jmp short write_MSR_1AD_to_CHOS

_10:FFFFFAE? H

_10:FFFFFAE? BO B8A mov a1,

_10:FFFFFAEB E6 88 out 86h, al ; manufacture's diagnostic checkpoint
_1B:FFFFFAED BE FA FA FF FF mov esi,

_18:FFFFFAF2 @F &E FE movd nn7, esi

_18:FFFFFAF5 E9 BF 80 68 80 jmp loc_FFFFFBBY

_1B:FFFFFAFA H

_10:FFFFFAFA BO 03 mnoy al,

_10:FFFFFAFC E6 86 out 86h, al ; manufacture's diagnostic checkpoint
_10:FFFFFAFE B@ 09 noy al,

_10:FFFFFBEO8 E6 86 out 86h, al ; manufacture's diagnostic checkpoint
_10:FFFFFEB2 BE OF FB FF FF noy esi,

_10:FFFFFBO7 OF &6E FE moud mn?, esi

“10:FFFFFBOA E9 B7 00 66 00 jmp send_IPI_thru_LAPLC

_10:FFFFFBOF H

1A:-FFFFFRAF RA AR mnu al.

Now beeping SOS.. (no

©@O3FFBEL

©@O3FF6EA

B03FF6FO

BO3FF6F4

©@O3FF716

@@3FF71D

B03FF720

B03FF723

©@03FF789

0O3FF6ES:

003FF6EC:

003FF6F2:

003FF6F6:
©OO3FF6FB:
003FF6FD:
B03FF702:
003FF704:
©03FF709:
003FF70B:
©83FF70D:
@03FF70F :
@83FF710:
@03FF712:
@@3FF714:

003FF718:

003FF71E:

003FF721:

003FF726:
©@O3FF728:
003FF72B:
©@03FF72D:
003FF72F:
©O83FF73E:
@03FF74D:
@83FF75C:
@03FF76B:
@B3FF77A:

0000

Ees
E643
66B8D11

E642
BB0900Q0AO
=:127)
BYFFFFQ100
EB@S
B90Q200000
E461

acez

E661

49

75FD

E461

24FC

E661
BOFFFFQ100
49

75FD

4B

740C
83FBO6
77DC
83FBO3
7700

EBDS

exactly a PIN logger)

out

mov

out 042,al ;'B"
mov ebx,9

jmps 0003FF704 --B
mov ecx,@0001FFFF ;' @
jmps 0003FF709 --B
mov ecx,000008000 ;' C '
in al,e61 ;'a"
or al,3

out e61,al ;'a"
dec ecx

inz @003FF78F --B
in al,eel ;'a’
and al,-4 ;"n*
out 061,al ;'a"
mov ecx,00001FFFF ;" B
dec ecx

inz @@a3FF71D --B
dec ebx

iz @@@3FF72F --E
cmp ebx,6

ja 0ea3FF704 --E
cmp ebx, 3

ja ©@@3FFeFD
jmps 0003FF704

nop

nop

nop

nop

nop

nop

Writing Payload to Early BIOS in SPI Flash

BitLocker Decrypted Drive With Patched UEFI BIOS

& » Control Panel » System and Security » BitLocker Drive Encryption

Gl sl - Help protect your files and folders by encrypting your drives

BitLocker Drive Encryption helps prevent unauthorized access to any files stored on the drives shown below.
You are able to use the computer normally, but unauthorized users cannot read or use your files

What should T know about BitLocker Drive Encryption before I turn it on?

BitLocker Drive Encryption - Hard Disk Drives
.a’;! C & Tumn Off BitLocker
5 on & Suspend Protection

& Manage BitLocker

B Administrator: Command Prompt

BitLocker Drive Er

Insert a removabl

& TPM Administration
& Disk Management

Read our privacy statement
online

But That P67 Board Is Just Too Old

ASUS P8Z77-V PRO

fnisus 1§ Exit/Advanced Hode

na-ng meee Bglish ¥

l ' '. l ' -l BIOS Uersion : 1805
'’ e’

CPU Type : Intel(® Core(TH) i3-3225 CPU @ 3.306Hz Speed : 3300 MHz
Friday[02/22/20131 Total Hemory : 1024 B (DDR3 1333MHz)

[R —— # Uoltage
« cRu_FAN U_OPT_FAN
H— .)

CHA_FANL cHi_FAN2
Cil systen Perfornance

Quiet

Perfornance Energy Saving
Nornal

Y Boot Priority

Use the mouse to drag or keyboard to navigate to decide the boot priority

Shortcut F3) Advanced Hode (F7) Boot Henu (F8) Default (FS)

m Yes! UEFI BIOS updates are signed

ASUS P8Z77-V PRO

fnisus 1§ Exit/Advanced Hode

na-ng meee Bglish ¥

l ' '. l ' -l BIOS Uersion : 1805
'’ e’

CPU Type : Intel(® Core(TH) i3-3225 CPU @ 3.306Hz Speed : 3300 MHz
Friday[02/22/20131 Total Hemory : 1024 B (DDR3 1333MHz)

[R —— # Uoltage
« cRu_FAN U_OPT_FAN
H— .)

CHA_FANL cHi_FAN2
Cil systen Perfornance

Quiet

Perfornance Energy Saving
Nornal

Y Boot Priority

Use the mouse to drag or keyboard to navigate to decide the boot priority

Shortcut F3) Advanced Hode (F7) Boot Henu (F8) Default (FS)

m Yes! UEFI BIOS updates are signed
m NIST will be happy

Or Not Yet

[+] imported chipsec.modules.common.bios_wp
Ix1[
[x] [Module: BIOS Region Urite Protection
Ix11
BIOS Control (BDF 0:31:0 + 6xDC) = 0x08

[051 SHMM_BUP = © (SMM BIOS Urite Protection)
[04] 1SS = 0 (Top Swap Status)

011 BLE = 0 (BIOS Lock Enable)

001 BIOSUWE = © (BIOS WUrite Enable)

[-1 FAILED: BIOS region write protection is disabled
[=] BIOS Region: Base = 0x00180000, Limit = 0x007FFFFF

SPI Protected Ranges

PRx (offset) | Value | Base | Limit | WP?7 | RP?

PRO (74) | 00000000 | 60000000 | 60000000 | ©
PR1 (78) | 60000000 | 60000000 | 60000000 | ©
PR2 (70) | 60000000 | 06060000 | 60000000 | ©
PR3 (80) | 60000000 | 06000000 | 60000000 | ©
PR4 (80 | 60000000 | 60000000 | 60000000 | ©
[-]1 FAILED: None of the SPI protected ranges write-protect BIOS region

fs0:\chipsec-1.0> _

Demo

m The problem applies to any Full-Disk Encryption solution with TPM,
not just Windows BitLocker

m It also is not specific to ASUS. | just happen to use a few of those
systems

Outline

Secure Boot

What About Secure Boot?

UEFI 2.3.1 / Windows 8 Secure Boot

m UEFI FW verifies digital signatures of non-embedded UEFI
executables

Signed UEFI drivers on adaptor cards/disk (Option ROMs), UEFI
apps, OS Loaders

Leverages Authenticode signing over PE/COFF binaries

Configuration stored in NVRAM as Authenticated Variables (PK,
KEK, db, dbx, SecureBoot)

UEFI Spec, Chapter 27
Windows 8 Logo requirements for Secure Boot

Windows 8 Logo Requirements

System.Fundamentals.Firmware.UEFISecureBoot

8. Mandatory. Secure firmware update process. If the platform firmware is to be serviced, it
must follow a secure update process. To ensure the lowest level code layer is not
compromised, the platform must support a secure firmware update process that ensures only
signed firmware components that can be verified using the signature database (and are not
invalidated by the forbidden signature database) can be installed. UEFI Boot Services
variables must be hardware-protected and preserved across flash updates. The Flash ROM
that stores the UEFI BIOS code must be protected. Flash that is typically open at reset (to
allow for authenticated firmware updates) must subsequently be locked before running any
unauthorized code. The firmware update process must also protect against rolling back to
insecure versions, or non-production versions that may disable secure boot or include non-
production keys. A physically present user may however override the rollback protection
manually. Further, it is recommended that manufacturers writing BIOS code adhere to the
NIST guidelines set out in NIST SP 800-147 (http://csrc.nist.gov/publications/nistpubs/800-
147/NIST-SPB800-147-April2011.pdf), BIOS Protection Guidelines, which provides guidelines
for building features into the BIOS that help protect it from being modified or corrupted by
attackers. For example, by using cryptographic digital signatures to authenticate BIOS
updates.

Outline

@A What Else?

BIOS Rootkits

BIOS Rootkit [5,6,7,15]

SMM Rootkit [8,9]

ACPI rootkit [12]

Mebromi - BIOS/Option ROM malware in the wild [14]

BIOS Rootkits

BIOS Rootkit [5,6,7,15]

SMM Rootkit [8,9]

ACPI rootkit [12]

Mebromi - BIOS/Option ROM malware in the wild [14]

If we don't properly protect the BIOS, malware will

Imagine BIOS malware restoring TDL4 infected MBR on each boot

v

Outline

Anything We Can Do?

Anything We Can Do?

If you care about Full-Disk Encryption or sneaky little UEFI malware

ASUS is releasing fixed revision of UEFI BIOS. Update!

Check with platform vendor if BIOS updates are signed and if BIOS
meets NIST SP800-147 requirements

Systems certified for Windows 8 are likely to sign UEFI updates
Check UEFI BIOS protections on your system

Do not leave your system unattended

Do not enter PIN if concerned that BIOS was compromised

Stop using systems with legacy BIOS

NIST should have a test suite to validate SP800-147 requirements

Acknowledgements / Greetings

CSW organizers and review board
ASUS for openly working with us on mitigations

apebit, Kirk Brannock, chopin, doughty, Efi, Laplinker, Lelia, Dhinesh
Manoharan, Misha, Bruce Monroe, Monty, Nick, Brian Payne, rfp,
secoeites, sharkey, toby, Vincent

And many others whom | deeply respect

Graphics from http://www.deviantart.com

http://www.deviantart.com

Further Reading

Evil Maid goes after TrueCrypt! by Alex Tereshkin and Joanna Rutkowska
Attacking the BitLocker Boot Process by Sven Turpe et al.

Anti Evil Maid by Joanna Rutkowska

Go Deep Into The Security of Firmware Update by Sun Bing

Persistent BIOS Infection by Anibal Sacco and Alfredo Ortega

Hardware Backdooring is Practical by Jonathan Brossard

Mac EFI Rootkits by snare

Real SMM Rootkit: Reversing and Hooking BIOS SMI Handlers by core collapse
New Breed of Stealthy Rootkits by Shawn Embelton and Sherry Sparks
Attacking Intel BIOS by Rafal Wojtczuk and Alexander Tereshkin

Firmware Rootkits: The Threat to The Enterprise by John Heasman
Implementing and Detecting an ACPI BIOS Rootkit by John Heasman
BIOS Boot Hijacking by Sun Bing

Mebromi

BIOS RootKit: Welcome Home, My Lord by lceLord

Hardware Involved Software Attacks by Jeff Forristal

Beyond BIOS by Vincent Zimmer
http://archives.neohapsis.com/archives/bugtraq/2009-08/0059.html

AFEARRENESESEONRBEOBENE

http://archives.neohapsis.com/archives/bugtraq/2009-08/0059.html

THANK YOU!

QUESTIONS?

	UEFI BIOS
	Measured/Trusted Boot
	The Real World: Bypassing Measured/Trusted Boot
	Windows BitLocker with TPM
	Secure Boot
	What Else?
	Anything We Can Do?

